mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
In #87741 we added the inference support for dynamo/torchxla integration. Later on in #88449 we attempt to add the training support. That attempt is not smooth because - we try 2 things together 1. let dynamo trace the model on xla rather than eager 2. enable training - It turns out neither of these two tasks are trivial enough. Furthermore, item 2 (enable training) depends on item 1 (tracing on xla). We enable training via AOTAutograd. AOTAutograd lift all model parameters/buffers as graph inputs. Without item 1 being done, we would need copy all graph inputs (including model parameters/buffers) from eager device to xla devices. That hurts performance a lot. Have a cache to map eager parameter to XLA parameter does not solve the problem since the update on either will not sync automatically to the other. They will easily go out of sync. This PR let dynamo trace the model on XLA rather than eager. This is a preparation step to enabling training. Also, tracing on XLA makes the data movement more efficient. We see 1.5x geomean speedup compared to previous 1.38x. ``` +-------------------------+--------------------+-------------------------+ | Model | XLA (trace once) | XLA (trace everytime) | +=========================+====================+=========================+ | resnet18 | 1.38 | 1.008 | +-------------------------+--------------------+-------------------------+ | resnet50 | 1.227 | 0.998 | +-------------------------+--------------------+-------------------------+ | resnext50_32x4d | 1.544 | 1.008 | +-------------------------+--------------------+-------------------------+ | alexnet | 1.085 | 1.045 | +-------------------------+--------------------+-------------------------+ | mobilenet_v2 | 2.028 | 1.013 | +-------------------------+--------------------+-------------------------+ | mnasnet1_0 | 1.516 | 0.995 | +-------------------------+--------------------+-------------------------+ | squeezenet1_1 | 0.868 | 1.01 | +-------------------------+--------------------+-------------------------+ | vgg16 | 1.099 | 1.008 | +-------------------------+--------------------+-------------------------+ | BERT_pytorch | 3.26 | 1.027 | +-------------------------+--------------------+-------------------------+ | timm_vision_transformer | 2.182 | 1.015 | +-------------------------+--------------------+-------------------------+ | geomean | 1.50389 | 1.01261 | +-------------------------+--------------------+-------------------------+ ``` Example command ``` GPU_NUM_DEVICES=1 python benchmarks/dynamo/torchbench.py --randomize-input --performance --trace-on-xla --only resnet18 --backend=torchxla_trace_once ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/88904 Approved by: https://github.com/wconstab, https://github.com/JackCaoG, https://github.com/jansel
1150 lines
34 KiB
Python
1150 lines
34 KiB
Python
import collections
|
|
import contextlib
|
|
import copy
|
|
import cProfile
|
|
import dataclasses
|
|
import datetime
|
|
import dis
|
|
import functools
|
|
import gc
|
|
import inspect
|
|
import itertools
|
|
import logging
|
|
import logging.config
|
|
import math
|
|
import operator
|
|
import os
|
|
import pstats
|
|
import re
|
|
import sys
|
|
import time
|
|
import types
|
|
import typing
|
|
import weakref
|
|
from contextlib import contextmanager
|
|
from functools import lru_cache
|
|
from typing import Any, Dict
|
|
|
|
import numpy as np
|
|
import sympy
|
|
|
|
import torch
|
|
from torch import fx
|
|
from torch._dispatch.python import enable_python_dispatcher
|
|
from torch.nn.modules.lazy import LazyModuleMixin
|
|
from torch.utils._pytree import tree_map
|
|
|
|
from . import config, logging as torchdynamo_logging
|
|
|
|
counters = collections.defaultdict(collections.Counter)
|
|
troubleshooting_url = (
|
|
"https://github.com/pytorch/torchdynamo/blob/main/TROUBLESHOOTING.md"
|
|
)
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
# profiling compilation time
|
|
compilation_metrics = collections.OrderedDict()
|
|
|
|
|
|
timer_counter = itertools.count()
|
|
|
|
|
|
def tabulate(rows, headers):
|
|
try:
|
|
import tabulate
|
|
|
|
return tabulate.tabulate(rows, headers=headers)
|
|
except ImportError:
|
|
return "\n".join(
|
|
", ".join(map(str, row)) for row in itertools.chain([headers], rows)
|
|
)
|
|
|
|
|
|
def dynamo_profiled(func):
|
|
def profile_wrapper(*args, **kwargs):
|
|
global timer_counter
|
|
datafn = (
|
|
func.__name__ + f"{next(timer_counter)}.profile"
|
|
) # Name the data file sensibly
|
|
prof = cProfile.Profile()
|
|
prof.enable()
|
|
retval = prof.runcall(func, *args, **kwargs)
|
|
prof.disable()
|
|
print(f"### Cprofile for {func.__name__} iter {next(timer_counter)} ###")
|
|
ps = pstats.Stats(prof)
|
|
ps.sort_stats(pstats.SortKey.TIME).print_stats(20)
|
|
ps.sort_stats(pstats.SortKey.CUMULATIVE).print_stats(20)
|
|
prof.dump_stats(datafn)
|
|
return retval
|
|
|
|
return profile_wrapper
|
|
|
|
|
|
def dynamo_timed(func):
|
|
def time_wrapper(*args, **kwargs):
|
|
key = func.__qualname__
|
|
if key not in compilation_metrics:
|
|
compilation_metrics[key] = []
|
|
t0 = time.time()
|
|
r = func(*args, **kwargs)
|
|
latency = time.time() - t0
|
|
# print(f"Dynamo timer: key={key}, latency={latency:.2f} sec")
|
|
compilation_metrics[key].append(latency)
|
|
return r
|
|
|
|
return time_wrapper
|
|
|
|
|
|
def compile_times(repr="str", aggregate=False):
|
|
"""
|
|
Get metrics about torchdynamo frontend/backend compilation times.
|
|
|
|
Accumulates information from functions tagged with `@dynamo_timed`.
|
|
|
|
repr='str' returns a printable string for user interaction, and 'csv'
|
|
returns headers, rows which can be logged for output
|
|
|
|
aggregate causes values from multiple compilations (e.g. split graphs)
|
|
to be accumulated into one value. If false, expect more than one value
|
|
per metric.
|
|
"""
|
|
|
|
def fmt_fn(values, item_fn=lambda x: x):
|
|
|
|
if aggregate:
|
|
return item_fn(sum(values))
|
|
return ", ".join(map(item_fn, values))
|
|
|
|
if repr == "str":
|
|
rows = [
|
|
(k, fmt_fn(compilation_metrics[k], item_fn=lambda x: f"{x:.4f}"))
|
|
for k in compilation_metrics
|
|
]
|
|
out = "TorchDynamo compilation metrics:\n"
|
|
out += tabulate(rows, headers=("Function", "Runtimes (s)"))
|
|
return out
|
|
elif repr == "csv":
|
|
values = [
|
|
fmt_fn(v, item_fn=lambda x: f"{x:.6f}")
|
|
for v in compilation_metrics.values()
|
|
]
|
|
headers = list(compilation_metrics.keys())
|
|
return headers, values
|
|
|
|
|
|
tensortype_to_dtype = {
|
|
torch.FloatTensor: (torch.float32, torch.float),
|
|
torch.DoubleTensor: (torch.float64, torch.double),
|
|
torch.HalfTensor: (torch.float16, torch.half),
|
|
torch.BFloat16Tensor: (torch.bfloat16,),
|
|
torch.ByteTensor: (torch.uint8,),
|
|
torch.CharTensor: (torch.int8,),
|
|
torch.LongTensor: (torch.int64, torch.long),
|
|
torch.IntTensor: (torch.int32, torch.int),
|
|
torch.ShortTensor: (torch.int16, torch.short),
|
|
torch.BoolTensor: (torch.bool,),
|
|
}
|
|
|
|
|
|
class DuplicateWarningChecker(object):
|
|
def __init__(self, maxsize=4096):
|
|
self.maxsize = maxsize
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.set = collections.OrderedDict()
|
|
|
|
def add(self, key):
|
|
if key in self.set:
|
|
self.set.move_to_end(key, last=True)
|
|
if not config.verbose:
|
|
return False
|
|
else:
|
|
self.set[key] = None
|
|
while len(self.set) > self.maxsize:
|
|
self.set.popitem(last=False)
|
|
return True
|
|
|
|
|
|
graph_break_dup_warning_checker = DuplicateWarningChecker()
|
|
|
|
|
|
def init_logging():
|
|
torchdynamo_logging.init_logging(
|
|
config.log_level, log_file_name=config.log_file_name
|
|
)
|
|
graph_break_dup_warning_checker.reset()
|
|
|
|
|
|
# filter out all frames after entering dynamo
|
|
def filter_stack(stack):
|
|
user_stack = []
|
|
for frame in stack:
|
|
if "convert_frame" in frame.filename:
|
|
break
|
|
if (
|
|
"eval_frame" in frame.filename
|
|
or f"{config.dynamo_import}.optimize(" in frame.line
|
|
):
|
|
continue
|
|
user_stack.append(frame)
|
|
|
|
return user_stack
|
|
|
|
|
|
def format_graph_tabular(graph):
|
|
node_specs = [[n.op, n.name, n.target, n.args, n.kwargs] for n in graph.nodes]
|
|
return tabulate(node_specs, headers=["opcode", "name", "target", "args", "kwargs"])
|
|
|
|
|
|
def format_bytecode(prefix, name, filename, line_no, code):
|
|
return f"{prefix} {name} {filename}\
|
|
line {line_no} \n{dis.Bytecode(code).dis()}\n "
|
|
|
|
|
|
def gen_record_file_name(exc, code):
|
|
return f"{get_debug_dir()}/error_recordings/\
|
|
{code.co_name}_{type(exc).__name__}_{code.co_firstlineno}.rec"
|
|
|
|
|
|
def write_record_to_file(filename, exec_record):
|
|
try:
|
|
if os.path.exists(filename):
|
|
log.warning(
|
|
f"Unable to write execution record {filename}; file already exists."
|
|
)
|
|
else:
|
|
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
|
with open(filename, "wb") as f:
|
|
exec_record.dump(f)
|
|
except Exception:
|
|
log.error(f"Unable to write execution record {filename}", exc_info=1)
|
|
|
|
|
|
def count_calls(g: fx.Graph):
|
|
c = 0
|
|
for n in g.nodes:
|
|
if "call" in n.op:
|
|
c += 1
|
|
return c
|
|
|
|
|
|
def identity(x):
|
|
return x
|
|
|
|
|
|
def nothing(*args, **kwargs):
|
|
pass
|
|
|
|
|
|
class ExactWeakKeyDictionary:
|
|
"""Similar to weakref.WeakKeyDictionary, but use `is`/`id` rather than `==` to compare equality"""
|
|
|
|
def __init__(self):
|
|
self.values = dict()
|
|
self.refs = dict()
|
|
|
|
def __getitem__(self, key):
|
|
return self.values[id(key)]
|
|
|
|
def get(self, key, default=None):
|
|
return self.values.get(id(key), default)
|
|
|
|
def __contains__(self, key):
|
|
return id(key) in self.values
|
|
|
|
def __setitem__(self, key, value):
|
|
idx = id(key)
|
|
if idx not in self.refs:
|
|
self.refs[idx] = weakref.ref(key, lambda ref: self._remove_id(idx))
|
|
self.values[idx] = value
|
|
|
|
def _remove_id(self, idx):
|
|
if idx in self.values:
|
|
del self.values[idx]
|
|
if idx in self.refs:
|
|
del self.refs[idx]
|
|
|
|
def clear(self):
|
|
self.refs.clear()
|
|
self.values.clear()
|
|
|
|
|
|
def istype(obj, allowed_types):
|
|
"""isinstance() without subclasses"""
|
|
if isinstance(allowed_types, (tuple, list, set)):
|
|
return type(obj) in allowed_types
|
|
return type(obj) is allowed_types
|
|
|
|
|
|
def is_typing(value):
|
|
if sys.version_info < (3, 9):
|
|
return isinstance(value, typing._GenericAlias)
|
|
else:
|
|
return isinstance(value, typing._SpecialGenericAlias)
|
|
|
|
|
|
def is_numpy_int_type(value):
|
|
return istype(
|
|
value,
|
|
(
|
|
np.int8,
|
|
np.int16,
|
|
np.int32,
|
|
np.int64,
|
|
np.uint8,
|
|
np.uint16,
|
|
np.uint32,
|
|
np.uint64,
|
|
),
|
|
)
|
|
|
|
|
|
def is_numpy_float_type(value):
|
|
return istype(
|
|
value,
|
|
(
|
|
np.float16,
|
|
np.float32,
|
|
np.float64,
|
|
),
|
|
)
|
|
|
|
|
|
def istensor(obj):
|
|
"""Check of obj is a tensor"""
|
|
tensor_list = (
|
|
torch.Tensor,
|
|
torch.nn.Parameter,
|
|
*config.traceable_tensor_subclasses,
|
|
)
|
|
if fake_tensors_available:
|
|
tensor_list = tensor_list + (torch._subclasses.FakeTensor,)
|
|
return istype(obj, tensor_list)
|
|
|
|
|
|
def is_lazy_module(mod):
|
|
return isinstance(mod, LazyModuleMixin)
|
|
|
|
|
|
@functools.lru_cache(4096)
|
|
def print_once(*args):
|
|
print(*args)
|
|
|
|
|
|
def make_cell(val=None):
|
|
"""Some black magic to create a cell object that usually only exists in a closure"""
|
|
x = val
|
|
|
|
def f():
|
|
return x
|
|
|
|
assert len(f.__closure__) == 1
|
|
return f.__closure__[0]
|
|
|
|
|
|
def proxy_args_kwargs(args, kwargs):
|
|
try:
|
|
proxy_args = tuple(arg.as_proxy() for arg in args)
|
|
proxy_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
|
|
return proxy_args, proxy_kwargs
|
|
except NotImplementedError:
|
|
from .exc import unimplemented
|
|
from .variables.base import typestr
|
|
|
|
raise unimplemented(
|
|
f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}"
|
|
)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class CleanupHook:
|
|
"""Remove a global variable when hook is called"""
|
|
|
|
scope: Dict[str, Any]
|
|
name: str
|
|
|
|
def __call__(self, *args):
|
|
CleanupManager.count -= 1
|
|
del self.scope[self.name]
|
|
|
|
@staticmethod
|
|
def create(scope, name, val):
|
|
assert name not in scope
|
|
CleanupManager.count += 1
|
|
scope[name] = val
|
|
return CleanupHook(scope, name)
|
|
|
|
|
|
class CleanupManager(ExactWeakKeyDictionary):
|
|
count = 0
|
|
|
|
def _remove_id(self, idx):
|
|
for hook in self.values[idx]:
|
|
hook()
|
|
super()._remove_id(idx)
|
|
|
|
|
|
CleanupManager.instance = CleanupManager()
|
|
|
|
|
|
def clone_tensor(x):
|
|
"""Clone the tensor and its gradient"""
|
|
y = x.clone().requires_grad_(x.requires_grad)
|
|
if x.is_leaf and x.grad is not None:
|
|
y.grad = x.grad.clone()
|
|
return y
|
|
|
|
|
|
def clone_input(x):
|
|
"""copy while preserving strides"""
|
|
|
|
def torch_clone(x):
|
|
y = torch.clone(x)
|
|
if x.is_leaf:
|
|
y.requires_grad_(x.requires_grad)
|
|
if x.is_leaf and x.grad is not None:
|
|
y.grad = clone_input(x.grad)
|
|
return y
|
|
|
|
with torch.no_grad():
|
|
if x.device.type == "xla":
|
|
# Access data_ptr() for a xla tensor will cause crash
|
|
return torch_clone(x)
|
|
|
|
needed_size = sum(
|
|
(shape - 1) * stride for shape, stride in zip(x.size(), x.stride())
|
|
)
|
|
if x.is_quantized:
|
|
result = torch.empty_quantized((needed_size + 32,), x)
|
|
else:
|
|
result = torch.empty(needed_size + 32, dtype=x.dtype, device=x.device)
|
|
cache_line_offset = (
|
|
(x.data_ptr() - result.data_ptr()) % 32
|
|
) // x.element_size()
|
|
result.as_strided_(x.size(), x.stride(), cache_line_offset)
|
|
try:
|
|
result.copy_(x.clone())
|
|
if x.is_leaf:
|
|
result.requires_grad_(x.requires_grad)
|
|
if x.is_leaf and x.grad is not None:
|
|
result.grad = clone_input(x.grad)
|
|
except RuntimeError:
|
|
# RuntimeError: unsupported operation: more than one element of the written-to
|
|
# tensor refers to a single memory location. Please clone() the tensor before
|
|
# performing the operation.
|
|
return torch_clone(x)
|
|
return result
|
|
|
|
|
|
def clone_inputs(example_inputs):
|
|
if isinstance(example_inputs, dict):
|
|
res = dict(example_inputs)
|
|
for key, value in res.items():
|
|
assert isinstance(value, torch.Tensor)
|
|
res[key] = clone_input(value)
|
|
return res
|
|
|
|
res = list(example_inputs)
|
|
for i in range(len(res)):
|
|
if isinstance(res[i], torch.Tensor):
|
|
res[i] = clone_input(res[i])
|
|
return res
|
|
|
|
|
|
@contextmanager
|
|
def preserve_rng_state():
|
|
rng = torch.clone(torch.random.get_rng_state())
|
|
if torch.cuda.is_available():
|
|
cuda_rng = torch.clone(torch.cuda.get_rng_state())
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.random.set_rng_state(rng)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_rng_state(cuda_rng)
|
|
|
|
|
|
def is_jit_model(model0):
|
|
return isinstance(
|
|
model0,
|
|
(
|
|
torch.jit._trace.TopLevelTracedModule,
|
|
torch.jit._script.RecursiveScriptModule,
|
|
torch.jit.ScriptFunction,
|
|
torch.jit.ScriptModule,
|
|
),
|
|
)
|
|
|
|
|
|
def torchscript(model, example_inputs, verbose=False):
|
|
if is_jit_model(model):
|
|
# already done?
|
|
return model
|
|
|
|
try:
|
|
return torch.jit.trace(model, example_inputs)
|
|
except Exception:
|
|
try:
|
|
return torch.jit.script(model)
|
|
except Exception:
|
|
if verbose:
|
|
log.exception("jit error")
|
|
else:
|
|
log.error("Both torch.jit.trace and torch.jit.script failed")
|
|
return None
|
|
|
|
|
|
def getfile(obj):
|
|
try:
|
|
return inspect.getfile(obj)
|
|
except TypeError:
|
|
return None
|
|
|
|
|
|
def is_namedtuple(obj):
|
|
"""Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
|
|
return is_namedtuple_cls(type(obj))
|
|
|
|
|
|
def is_namedtuple_cls(cls):
|
|
"""Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
|
|
try:
|
|
if issubclass(cls, tuple):
|
|
bases = getattr(cls, "__bases__", []) or [None]
|
|
module = getattr(cls, "__module__", None)
|
|
return module == "torch.return_types" or (
|
|
bases[0] is tuple and hasattr(cls, "_make") and hasattr(cls, "_fields")
|
|
)
|
|
except TypeError:
|
|
pass
|
|
return False
|
|
|
|
|
|
@functools.lru_cache(1)
|
|
def namedtuple_fields(cls):
|
|
"""Get the fields of a namedtuple or a torch.return_types.* quasi-namedtuple"""
|
|
if cls is slice:
|
|
return ["start", "stop", "step"]
|
|
|
|
assert issubclass(cls, tuple)
|
|
if hasattr(cls, "_fields"):
|
|
# normal namedtuples
|
|
return cls._fields
|
|
|
|
@dataclasses.dataclass
|
|
class Marker:
|
|
index: int
|
|
|
|
# frustrating ones e.g. torch.return_types.max
|
|
assert cls.__module__ == "torch.return_types"
|
|
obj = cls(map(Marker, range(cls.n_fields)))
|
|
fields = [None] * cls.n_fields
|
|
for name in dir(obj):
|
|
if name[0] != "_" and isinstance(getattr(obj, name), Marker):
|
|
fields[getattr(obj, name).index] = name
|
|
return fields
|
|
|
|
|
|
def checkpoint_params(gm):
|
|
with torch.no_grad():
|
|
rng_state = torch.clone(torch.random.get_rng_state())
|
|
if torch.cuda.is_available():
|
|
cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
|
|
saved_state = []
|
|
for param in itertools.chain(gm.parameters(), gm.buffers()):
|
|
saved_state.append((param, param._version, torch.clone(param)))
|
|
|
|
def restore():
|
|
with torch.no_grad():
|
|
torch.random.set_rng_state(rng_state)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_rng_state(cuda_rng_state)
|
|
for param, version, original_value in saved_state:
|
|
if param._version != version:
|
|
param.copy_(original_value)
|
|
|
|
return restore
|
|
|
|
|
|
def timed(model, example_inputs, times=1):
|
|
if torch.cuda.is_available():
|
|
synchronize = torch.cuda.synchronize
|
|
else:
|
|
synchronize = nothing
|
|
|
|
synchronize()
|
|
gc.collect()
|
|
torch.manual_seed(1337)
|
|
t0 = time.perf_counter()
|
|
for _ in range(times):
|
|
result = model(*example_inputs)
|
|
synchronize()
|
|
t1 = time.perf_counter()
|
|
return result, t1 - t0
|
|
|
|
|
|
def check_is_cuda(gm, example_inputs):
|
|
return all(x.is_cuda for x in itertools.chain(example_inputs, gm.parameters(True)))
|
|
|
|
|
|
@lru_cache(32)
|
|
def rot_n_helper(n):
|
|
assert n > 1
|
|
vars = [f"v{i}" for i in range(n)]
|
|
rotated = reversed(vars[-1:] + vars[:-1])
|
|
fn = eval(f"lambda {','.join(vars)}: ({','.join(rotated)})")
|
|
fn.__name__ = f"rot_{n}_helper"
|
|
return fn
|
|
|
|
|
|
def is_safe_constant(v):
|
|
if istype(v, (tuple, frozenset)):
|
|
return all(map(is_safe_constant, v))
|
|
return istype(
|
|
v,
|
|
(
|
|
types.CodeType,
|
|
int,
|
|
float,
|
|
bool,
|
|
str,
|
|
bytes,
|
|
type(None),
|
|
slice,
|
|
type(type),
|
|
torch.device,
|
|
),
|
|
)
|
|
|
|
|
|
def check_constant_args(args, kwargs):
|
|
return all(x.is_python_constant() for x in itertools.chain(args, kwargs.values()))
|
|
|
|
|
|
def check_unspec_python_args(args, kwargs):
|
|
from .variables.constant import ConstantVariable
|
|
from .variables.tensor import UnspecializedPythonVariable
|
|
|
|
unspec_count = 0
|
|
for x in itertools.chain(args, kwargs.values()):
|
|
if isinstance(x, UnspecializedPythonVariable):
|
|
unspec_count += 1
|
|
elif not isinstance(x, (UnspecializedPythonVariable, ConstantVariable)):
|
|
return False
|
|
else:
|
|
pass
|
|
|
|
return unspec_count > 0
|
|
|
|
|
|
def specialize_args_kwargs(tx, args, kwargs):
|
|
specialized_args = []
|
|
specialized_kwargs = {}
|
|
for x in args:
|
|
specialized_args.append(x.as_specialized(tx))
|
|
for k, v in kwargs.items():
|
|
specialized_kwargs.update({k: v.as_specialized(tx)})
|
|
return specialized_args, specialized_kwargs
|
|
|
|
|
|
dict_values = type(dict().values())
|
|
odict_values = type(collections.OrderedDict().values())
|
|
tuple_iterator = type(iter(tuple()))
|
|
tuple_iterator_len = tuple_iterator.__length_hint__
|
|
object_new = object.__new__
|
|
|
|
|
|
def product(it):
|
|
return functools.reduce(operator.mul, it, 1)
|
|
|
|
|
|
def tuple_iterator_getitem(it, index):
|
|
_, (obj,), start = it.__reduce__()
|
|
return obj[start + index]
|
|
|
|
|
|
def dict_param_key_ids(value):
|
|
return set([id(k) for k in value.keys() if isinstance(k, torch.nn.Parameter)])
|
|
|
|
|
|
def dict_const_keys(value):
|
|
return set(k for k in value.keys() if not isinstance(k, torch.nn.Parameter))
|
|
|
|
|
|
def global_key_name(key):
|
|
return f"__dict_key_{id(key)}"
|
|
|
|
|
|
def rename_implicit(v):
|
|
"""
|
|
Usage of inline comprehensions generates a implicit ".0" variable that
|
|
trips up guard generation. This renames these variables in guards.
|
|
"""
|
|
m = re.match(r"^[.](\d+)$", v)
|
|
if m:
|
|
assert v == ".0", f"currently only .0 supported: {v}"
|
|
# to support .1 etc see guards.py and _eval_frame.c
|
|
return f"___implicit{m.group(1)}"
|
|
return v
|
|
|
|
|
|
# FakeTensors were introduced after pytorch 1.12, so gate their use
|
|
# to allow pytorch 1.12 to work
|
|
fake_tensors_available = True
|
|
try:
|
|
from torch._subclasses import ( # noqa: F401
|
|
FakeTensorMode,
|
|
UnsupportedFakeTensorException,
|
|
)
|
|
|
|
def make_fake_tensor(e, fake_mode, static_shapes=False, tx=None):
|
|
fake_tensor = fake_mode.from_tensor(e, static_shapes=static_shapes)
|
|
if tx is not None:
|
|
from torch._dynamo.guards import TensorReference
|
|
|
|
def _record(tensor_ref):
|
|
if tensor_ref.ref_id not in tx.output.tensor_id_to_sym_shape_ref:
|
|
tx.output.tensor_id_to_sym_shape_ref[tensor_ref.ref_id] = set()
|
|
tx.output.tensor_id_to_sym_shape_ref[tensor_ref.ref_id].add(tensor_ref)
|
|
|
|
def _extract(symbol):
|
|
if isinstance(symbol, int):
|
|
return None
|
|
sym_expr = symbol.get_pyobj().expr
|
|
if not isinstance(sym_expr, sympy.Symbol):
|
|
return None
|
|
return sym_expr
|
|
|
|
def _record_ref(e, index, symbol, kind):
|
|
sym_expr = _extract(symbol)
|
|
if sym_expr:
|
|
tensor_ref = TensorReference(id(e), kind, index, sym_expr)
|
|
_record(tensor_ref)
|
|
|
|
for index, symbol in enumerate(fake_tensor.size()):
|
|
_record_ref(e, index, symbol, "size")
|
|
|
|
for index, symbol in enumerate(fake_tensor.stride()):
|
|
_record_ref(e, index, symbol, "stride")
|
|
|
|
offset = fake_tensor.storage_offset()
|
|
_record_ref(e, None, offset, "storage_offset")
|
|
|
|
return fake_tensor
|
|
|
|
def wrap_fake_exception(fn):
|
|
try:
|
|
return fn()
|
|
except UnsupportedFakeTensorException as e:
|
|
from .exc import unimplemented
|
|
|
|
msg = f"Unsupported: {e.reason} with fake tensor propagation. Run with config.fake_tensor_propagation=False"
|
|
log.warning(msg)
|
|
raise unimplemented(msg)
|
|
|
|
def wrap_to_fake_tensor(e, fake_mode):
|
|
if type(e) in (torch.Tensor, torch.nn.Parameter):
|
|
return wrap_fake_exception(
|
|
lambda: make_fake_tensor(
|
|
e, fake_mode, static_shapes=config.dynamic_shapes is False
|
|
)
|
|
)
|
|
else:
|
|
return e
|
|
|
|
def wrap_to_fake_tensor_and_record(e, tx):
|
|
if type(e) in (torch.Tensor, torch.nn.Parameter):
|
|
static_shapes = config.dynamic_shapes is False
|
|
if type(e) is torch.nn.Parameter:
|
|
# Always static for params
|
|
static_shapes = True
|
|
return wrap_fake_exception(
|
|
lambda: make_fake_tensor(e, tx.fake_mode, static_shapes, tx)
|
|
)
|
|
else:
|
|
return e
|
|
|
|
def deepcopy_to_fake_tensor(obj, fake_mode):
|
|
with torch._subclasses.fake_tensor.FakeCopyMode(fake_mode):
|
|
return wrap_fake_exception(lambda: copy.deepcopy(obj))
|
|
|
|
except ImportError:
|
|
fake_tensors_available = False
|
|
|
|
|
|
def rmse(ref, res):
|
|
"""
|
|
Calculate root mean squared error
|
|
"""
|
|
return torch.sqrt(torch.mean(torch.square(ref - res)))
|
|
|
|
|
|
def same(
|
|
ref,
|
|
res,
|
|
fp64_ref=None,
|
|
cos_similarity=False,
|
|
tol=1e-4,
|
|
equal_nan=False,
|
|
exact_dtype=True,
|
|
):
|
|
"""Check correctness to see if ref and res match"""
|
|
if fp64_ref is None:
|
|
fp64_ref = ref
|
|
if isinstance(ref, (list, tuple, torch.nn.ParameterList, torch.Size)):
|
|
assert isinstance(res, (list, tuple)), f"type mismatch {type(ref)} {type(res)}"
|
|
return len(ref) == len(res) and all(
|
|
same(ai, bi, fp64_refi, cos_similarity, tol, equal_nan, exact_dtype)
|
|
for ai, bi, fp64_refi in zip(ref, res, fp64_ref)
|
|
)
|
|
elif isinstance(ref, dict):
|
|
assert isinstance(res, dict)
|
|
assert set(ref.keys()) == set(
|
|
res.keys()
|
|
), f"keys mismatch {set(ref.keys())} == {set(res.keys())}"
|
|
for k in ref.keys():
|
|
if not (
|
|
same(
|
|
ref[k],
|
|
res[k],
|
|
fp64_ref[k],
|
|
cos_similarity=cos_similarity,
|
|
tol=tol,
|
|
equal_nan=equal_nan,
|
|
exact_dtype=exact_dtype,
|
|
)
|
|
):
|
|
log.error(f"Accuracy failed for key name {k}")
|
|
return False
|
|
return True
|
|
elif isinstance(ref, torch.Tensor):
|
|
if ref.is_sparse:
|
|
assert res.is_sparse
|
|
ref = ref.to_dense()
|
|
res = res.to_dense()
|
|
assert isinstance(res, torch.Tensor), f"type mismatch {type(ref)} {type(res)}"
|
|
if exact_dtype:
|
|
if ref.dtype != res.dtype:
|
|
log.error(f"dtype mismatch {ref.dtype}, {res.dtype}")
|
|
return False
|
|
if ref.dtype == torch.bool:
|
|
# triton stores bool as int8, so add this for more accurate checking
|
|
return torch.allclose(
|
|
ref.to(dtype=torch.uint8),
|
|
res.to(dtype=torch.uint8),
|
|
atol=tol,
|
|
rtol=tol,
|
|
equal_nan=equal_nan,
|
|
)
|
|
if cos_similarity:
|
|
ref = ref.flatten().to(torch.float32)
|
|
res = res.flatten().to(torch.float32)
|
|
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=True):
|
|
# early exit that handles zero/nan better
|
|
# cosine_similarity(zeros(10), zeros(10), dim=0) is 0
|
|
return True
|
|
res = torch.nn.functional.cosine_similarity(ref, res, dim=0, eps=1e-6)
|
|
if res < 0.99:
|
|
log.warning(f"Similarity score={res.cpu().detach().item()}")
|
|
return res >= 0.99
|
|
else:
|
|
if not exact_dtype:
|
|
ref = ref.to(res.dtype)
|
|
|
|
# First try usual allclose
|
|
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=equal_nan):
|
|
return True
|
|
|
|
# Check error from fp64 version
|
|
if fp64_ref.dtype == torch.float64:
|
|
ref_error = rmse(fp64_ref, ref).item()
|
|
res_error = rmse(fp64_ref, res).item()
|
|
multiplier = 2.0
|
|
|
|
if fp64_ref.numel() < 1000 or (
|
|
ref.ndim == 4 and ref.shape[-1] == ref.shape[-2] == 1
|
|
):
|
|
# In the presence of noise, noise might dominate our error
|
|
# metric for smaller tensors.
|
|
# Similary, for 1x1 kenerls, there seems to be high noise with amp.
|
|
multiplier = 3.0
|
|
|
|
passes_test = res_error <= (multiplier * ref_error + 1e-4)
|
|
if not passes_test:
|
|
log.error(
|
|
f"RMSE (res-fp64): {res_error:.5f}, (ref-fp64): {ref_error:.5f} and shape={res.size()}"
|
|
)
|
|
# import pdb; pdb.set_trace()
|
|
return passes_test
|
|
|
|
return False
|
|
elif isinstance(ref, (str, int, type(None), bool, torch.device)):
|
|
return ref == res
|
|
elif isinstance(ref, float):
|
|
return math.isclose(ref, res, rel_tol=tol, abs_tol=tol)
|
|
elif is_numpy_int_type(ref) or is_numpy_float_type(ref):
|
|
return (type(ref) is type(res)) and (ref == res)
|
|
elif type(ref).__name__ in (
|
|
"MaskedLMOutput",
|
|
"Seq2SeqLMOutput",
|
|
"CausalLMOutputWithCrossAttentions",
|
|
"LongformerMaskedLMOutput",
|
|
"Instances",
|
|
"SquashedNormal",
|
|
"Boxes",
|
|
"Normal",
|
|
"TanhTransform",
|
|
"Foo",
|
|
"Variable",
|
|
):
|
|
assert type(ref) is type(res)
|
|
return all(
|
|
same(
|
|
getattr(ref, key),
|
|
getattr(res, key),
|
|
getattr(fp64_ref, key),
|
|
cos_similarity=cos_similarity,
|
|
tol=tol,
|
|
equal_nan=equal_nan,
|
|
exact_dtype=exact_dtype,
|
|
)
|
|
for key in ref.__dict__.keys()
|
|
)
|
|
else:
|
|
raise RuntimeError(f"unsupported type: {type(ref).__name__}")
|
|
|
|
|
|
def format_func_info(code):
|
|
short_filename = code.co_filename.split("/")[-1]
|
|
return f"'{code.co_name}' ({short_filename}:{code.co_firstlineno})"
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def disable_cache_limit():
|
|
prior = config.cache_size_limit
|
|
config.cache_size_limit = sys.maxsize
|
|
|
|
try:
|
|
yield
|
|
finally:
|
|
pass
|
|
config.cache_size_limit = prior
|
|
|
|
|
|
# map from transformed code back to original user code
|
|
orig_code_map = ExactWeakKeyDictionary()
|
|
|
|
# keep a record of code_obj -> list of guard failure reasons for logging
|
|
guard_failures = collections.defaultdict(list)
|
|
|
|
|
|
class CompileProfiler:
|
|
"""Utility for profiling how and what dynamo would compile.
|
|
|
|
Can be used for
|
|
* diagnosing recompilation issues
|
|
* determining an appropriate compile cache limit
|
|
* (TODO)confirming which functions got compiled/skipped
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.frame_count = 0
|
|
self.op_count = 0
|
|
self.backend_ctx_ctor = lambda: disable_cache_limit()
|
|
|
|
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
|
|
self.frame_count += 1
|
|
for node in gm.graph.nodes:
|
|
if "call" in node.op:
|
|
self.op_count += 1
|
|
return gm.forward
|
|
|
|
def get_metrics(self):
|
|
return {"guard_failures": guard_failures}
|
|
|
|
def report(self):
|
|
metrics = self.get_metrics()
|
|
gf = metrics["guard_failures"]
|
|
|
|
def num_recompiles(code):
|
|
return len(gf[code])
|
|
|
|
def recompile_reasons(code):
|
|
return "\n".join([str(x) for x in gf[code]])
|
|
|
|
summarized_gf = [
|
|
[format_func_info(code), num_recompiles(code), recompile_reasons(code)]
|
|
for code in gf
|
|
]
|
|
rpt = "Torchdynamo Profiler Report\n"
|
|
if "graph_break" in counters:
|
|
rpt += "\n"
|
|
rpt += "The following conditions caused torchdynamo to break out of tracing and fall back to python.\n"
|
|
rpt += (
|
|
f"You may gain additional insight by passing `nopython=True` to {config.dynamo_import}.optimize, "
|
|
"to break on the first condition.\n"
|
|
)
|
|
graph_breaks = counters["graph_break"]
|
|
rpt += tabulate(
|
|
[[msg, graph_breaks[msg]] for msg in graph_breaks],
|
|
headers=["Graph Break Reason", "Count"],
|
|
)
|
|
|
|
if len(gf):
|
|
max_recompiles = max([num_recompiles(code) for code in gf])
|
|
rpt += "\n"
|
|
rpt += (
|
|
"These subgraphs were recompiled more than once due to guard failures."
|
|
)
|
|
rpt += (
|
|
"Guard failures indicate some condition assumed to be static by the tracer changed, "
|
|
"making it unsafe to reuse the compiled program."
|
|
)
|
|
rpt += tabulate(
|
|
summarized_gf,
|
|
headers=["Function", "Num Recompiles", "Recompile Reasons"],
|
|
)
|
|
rpt += "\n"
|
|
rpt += (
|
|
f"Set {config.dynamo_import}.config.cache_size_limit to "
|
|
f"{max_recompiles} to avoid being cache limited.\n"
|
|
)
|
|
else:
|
|
rpt += "No cache-limited recompilations detected.\n"
|
|
|
|
return rpt
|
|
|
|
|
|
# return same dir unless user changes config between calls
|
|
@functools.lru_cache(None)
|
|
def _get_debug_dir(root_dir):
|
|
dir_name = "run_" + datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")
|
|
return os.path.join(root_dir, dir_name)
|
|
|
|
|
|
def get_debug_dir():
|
|
debug_root = config.debug_dir_root
|
|
return _get_debug_dir(debug_root)
|
|
|
|
|
|
def get_fake_value(node, tx):
|
|
"""
|
|
Run the computation represented by `node` using fake tensors and return the result.
|
|
"""
|
|
from .exc import TorchRuntimeError, unimplemented, Unsupported
|
|
|
|
op = node.op
|
|
fake_wrapper = functools.partial(wrap_to_fake_tensor_and_record, tx=tx)
|
|
|
|
def visit(n: torch.fx.Node):
|
|
return n.meta["example_value"]
|
|
|
|
args, kwargs = torch.fx.node.map_arg((node.args, node.kwargs), visit)
|
|
args = tree_map(fake_wrapper, args)
|
|
kwargs = tree_map(fake_wrapper, kwargs)
|
|
|
|
nnmodule = None
|
|
if op == "call_module":
|
|
nnmodule = tx.output.nn_modules[node.target]
|
|
|
|
if not is_lazy_module(nnmodule):
|
|
nnmodule = deepcopy_to_fake_tensor(nnmodule, tx.fake_mode)
|
|
|
|
if op == "call_module" and is_lazy_module(nnmodule):
|
|
assert nnmodule is not None
|
|
# In the case of a lazy module, we want to run
|
|
# the pre-hooks which initialize it
|
|
nnmodule(*args, **kwargs)
|
|
try:
|
|
with tx.fake_mode, enable_python_dispatcher():
|
|
return wrap_fake_exception(
|
|
lambda: run_node(tx.output, node, args, kwargs, nnmodule)
|
|
)
|
|
except Unsupported:
|
|
raise
|
|
except RuntimeError as e:
|
|
cause = e
|
|
if e.__cause__ is not None:
|
|
cause = e.__cause__
|
|
if isinstance(
|
|
cause, torch._subclasses.fake_tensor.DataDependentOutputException
|
|
):
|
|
if config.capture_scalar_outputs and node.target == "item":
|
|
return torch.zeros(size=(), dtype=args[0].dtype).item()
|
|
else:
|
|
unimplemented(f"data dependent operator: {cause.func}")
|
|
elif isinstance(
|
|
cause, torch._subclasses.fake_tensor.DynamicOutputShapeException
|
|
):
|
|
unimplemented(f"dynamic shape operator: {cause.func}")
|
|
raise TorchRuntimeError() from e
|
|
|
|
|
|
def run_node(output_graph, node, args, kwargs, nnmodule):
|
|
"""
|
|
Runs a given node, with the given args and kwargs.
|
|
|
|
Behavior is dicatated by a node's op.
|
|
|
|
run_node is useful for extracting real values out of nodes.
|
|
See get_real_value for more info on common usage.
|
|
|
|
Note: The output_graph arg is only used for 'get_attr' ops
|
|
Note: The nnmodule arg is only used for 'call_module' ops
|
|
|
|
Nodes that are not call_function, call_method, call_module, or get_attr will
|
|
raise an AssertionError.
|
|
"""
|
|
op = node.op
|
|
try:
|
|
if op == "call_function":
|
|
return node.target(*args, **kwargs)
|
|
elif op == "call_method":
|
|
return getattr(args[0], node.target)(*args[1:], **kwargs)
|
|
elif op == "call_module":
|
|
assert nnmodule is not None
|
|
return nnmodule(*args, **kwargs)
|
|
elif op == "get_attr":
|
|
return output_graph.get_submodule(node.target)
|
|
except Exception as e:
|
|
raise RuntimeError(
|
|
f"Failed running {op} {node.target}(*{args}, **{kwargs}):\n{e}\n(scroll up for backtrace)"
|
|
) from e
|
|
raise AssertionError(op)
|
|
|
|
|
|
def get_real_value(node, output_graph):
|
|
"""
|
|
Run the actual computation represented by `node` and return the result.
|
|
This will execute any dependent nodes in the graph as well.
|
|
"""
|
|
cache = output_graph.real_value_cache
|
|
if node in cache:
|
|
return cache[node]
|
|
|
|
op = node.op
|
|
args, kwargs = torch.fx.node.map_arg(
|
|
(node.args, node.kwargs),
|
|
lambda n: get_real_value(n, output_graph),
|
|
)
|
|
|
|
if op == "call_module":
|
|
nn_module = output_graph.nn_modules[node.target]
|
|
if not is_lazy_module(nn_module):
|
|
nn_module = copy.deepcopy(nn_module)
|
|
else:
|
|
# In the case of a lazy module, we want to run
|
|
# the pre-hooks which initialize it
|
|
nn_module(*args, **kwargs)
|
|
else:
|
|
nn_module = None
|
|
|
|
try:
|
|
real_value = run_node(output_graph, node, args, kwargs, nn_module)
|
|
cache[node] = real_value
|
|
except RuntimeError as e:
|
|
raise TorchRuntimeError() from e
|
|
return real_value
|