mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
* added functionality for state_dict/load_state_dict for lr_scheduler * fixed linting issues/removed unused import * refactor lr_scheduler state_dicts/state_dict holds everything __dict__ but optimizer * changed documentation in lr_scheduler * Update lr_scheduler.py
682 lines
27 KiB
Python
682 lines
27 KiB
Python
import math
|
|
import unittest
|
|
import functools
|
|
from copy import deepcopy
|
|
import torch
|
|
import torch.optim as optim
|
|
import torch.legacy.optim as old_optim
|
|
import torch.nn.functional as F
|
|
from torch.optim import SGD
|
|
from torch.autograd import Variable
|
|
from torch import sparse
|
|
from torch.optim.lr_scheduler import LambdaLR, StepLR, MultiStepLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau
|
|
from common import TestCase, run_tests
|
|
|
|
|
|
def rosenbrock(tensor):
|
|
x, y = tensor
|
|
return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2
|
|
|
|
|
|
def drosenbrock(tensor):
|
|
x, y = tensor
|
|
return torch.DoubleTensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2)))
|
|
|
|
|
|
def wrap_old_fn(old_fn, **config):
|
|
def wrapper(closure, params, state):
|
|
return old_fn(closure, params, config, state)
|
|
return wrapper
|
|
|
|
|
|
class TestOptim(TestCase):
|
|
|
|
def _test_rosenbrock(self, constructor, old_fn):
|
|
params_t = torch.Tensor([1.5, 1.5])
|
|
state = {}
|
|
|
|
params = Variable(torch.Tensor([1.5, 1.5]), requires_grad=True)
|
|
optimizer = constructor([params])
|
|
|
|
solution = torch.Tensor([1, 1])
|
|
initial_dist = params.data.dist(solution)
|
|
|
|
def eval():
|
|
optimizer.zero_grad()
|
|
loss = rosenbrock(params)
|
|
loss.backward()
|
|
# loss.backward() will give **slightly** different
|
|
# gradients, than drosenbtock, because of a different ordering
|
|
# of floating point operations. In most cases it doesn't matter,
|
|
# but some optimizers are so sensitive that they can temporarily
|
|
# diverge up to 1e-4, just to converge again. This makes the
|
|
# comparison more stable.
|
|
params.grad.data.copy_(drosenbrock(params.data))
|
|
return loss
|
|
|
|
for i in range(2000):
|
|
optimizer.step(eval)
|
|
old_fn(lambda _: (rosenbrock(params_t), drosenbrock(params_t)),
|
|
params_t, state)
|
|
self.assertEqual(params.data, params_t)
|
|
|
|
self.assertLessEqual(params.data.dist(solution), initial_dist)
|
|
|
|
def _test_rosenbrock_sparse(self, constructor, sparse_only=False):
|
|
params_t = torch.Tensor([1.5, 1.5])
|
|
|
|
params = Variable(params_t, requires_grad=True)
|
|
optimizer = constructor([params])
|
|
|
|
if not sparse_only:
|
|
params_c = Variable(params_t.clone(), requires_grad=True)
|
|
optimizer_c = constructor([params_c])
|
|
|
|
solution = torch.Tensor([1, 1])
|
|
initial_dist = params.data.dist(solution)
|
|
|
|
def eval(params, sparse_grad, w):
|
|
# Depending on w, provide only the x or y gradient
|
|
optimizer.zero_grad()
|
|
loss = rosenbrock(params)
|
|
loss.backward()
|
|
grad = drosenbrock(params.data)
|
|
# NB: We torture test the optimizer by returning an
|
|
# uncoalesced sparse tensor
|
|
if w:
|
|
i = torch.LongTensor([[0, 0]])
|
|
x = grad[0]
|
|
v = torch.DoubleTensor([x / 4., x - x / 4.])
|
|
else:
|
|
i = torch.LongTensor([[1, 1]])
|
|
y = grad[1]
|
|
v = torch.DoubleTensor([y - y / 4., y / 4.])
|
|
x = sparse.DoubleTensor(i, v, torch.Size([2]))
|
|
if sparse_grad:
|
|
params.grad.data = x
|
|
else:
|
|
params.grad.data = x.to_dense()
|
|
return loss
|
|
|
|
for i in range(2000):
|
|
# Do cyclic coordinate descent
|
|
w = i % 2
|
|
optimizer.step(functools.partial(eval, params, True, w))
|
|
if not sparse_only:
|
|
optimizer_c.step(functools.partial(eval, params_c, False, w))
|
|
self.assertEqual(params.data, params_c.data)
|
|
|
|
self.assertLessEqual(params.data.dist(solution), initial_dist)
|
|
|
|
def _test_basic_cases_template(self, weight, bias, input, constructor):
|
|
weight = Variable(weight, requires_grad=True)
|
|
bias = Variable(bias, requires_grad=True)
|
|
input = Variable(input)
|
|
optimizer = constructor(weight, bias)
|
|
|
|
# to check if the optimizer can be printed as a string
|
|
optimizer.__repr__()
|
|
|
|
def fn():
|
|
optimizer.zero_grad()
|
|
y = weight.mv(input)
|
|
if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():
|
|
y = y.cuda(bias.get_device())
|
|
loss = (y + bias).pow(2).sum()
|
|
loss.backward()
|
|
return loss
|
|
|
|
initial_value = fn().item()
|
|
for i in range(200):
|
|
optimizer.step(fn)
|
|
self.assertLess(fn().item(), initial_value)
|
|
|
|
def _test_state_dict(self, weight, bias, input, constructor):
|
|
weight = Variable(weight, requires_grad=True)
|
|
bias = Variable(bias, requires_grad=True)
|
|
input = Variable(input)
|
|
|
|
def fn_base(optimizer, weight, bias):
|
|
optimizer.zero_grad()
|
|
i = input_cuda if weight.is_cuda else input
|
|
loss = (weight.mv(i) + bias).pow(2).sum()
|
|
loss.backward()
|
|
return loss
|
|
|
|
optimizer = constructor(weight, bias)
|
|
fn = functools.partial(fn_base, optimizer, weight, bias)
|
|
|
|
# Prime the optimizer
|
|
for i in range(20):
|
|
optimizer.step(fn)
|
|
# Clone the weights and construct new optimizer for them
|
|
weight_c = Variable(weight.data.clone(), requires_grad=True)
|
|
bias_c = Variable(bias.data.clone(), requires_grad=True)
|
|
optimizer_c = constructor(weight_c, bias_c)
|
|
fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c)
|
|
# Load state dict
|
|
state_dict = deepcopy(optimizer.state_dict())
|
|
state_dict_c = deepcopy(optimizer.state_dict())
|
|
optimizer_c.load_state_dict(state_dict_c)
|
|
# Run both optimizations in parallel
|
|
for i in range(20):
|
|
optimizer.step(fn)
|
|
optimizer_c.step(fn_c)
|
|
self.assertEqual(weight, weight_c)
|
|
self.assertEqual(bias, bias_c)
|
|
# Make sure state dict wasn't modified
|
|
self.assertEqual(state_dict, state_dict_c)
|
|
|
|
# Check that state dict can be loaded even when we cast parameters
|
|
# to a different type and move to a different device.
|
|
if not torch.cuda.is_available():
|
|
return
|
|
|
|
input_cuda = Variable(input.data.float().cuda())
|
|
weight_cuda = Variable(weight.data.float().cuda(), requires_grad=True)
|
|
bias_cuda = Variable(bias.data.float().cuda(), requires_grad=True)
|
|
optimizer_cuda = constructor(weight_cuda, bias_cuda)
|
|
fn_cuda = functools.partial(fn_base, optimizer_cuda, weight_cuda, bias_cuda)
|
|
|
|
state_dict = deepcopy(optimizer.state_dict())
|
|
state_dict_c = deepcopy(optimizer.state_dict())
|
|
optimizer_cuda.load_state_dict(state_dict_c)
|
|
|
|
# Make sure state dict wasn't modified
|
|
self.assertEqual(state_dict, state_dict_c)
|
|
|
|
for i in range(20):
|
|
optimizer.step(fn)
|
|
optimizer_cuda.step(fn_cuda)
|
|
self.assertEqual(weight, weight_cuda)
|
|
self.assertEqual(bias, bias_cuda)
|
|
|
|
def _test_basic_cases(self, constructor, ignore_multidevice=False):
|
|
self._test_state_dict(
|
|
torch.randn(10, 5),
|
|
torch.randn(10),
|
|
torch.randn(5),
|
|
constructor
|
|
)
|
|
self._test_basic_cases_template(
|
|
torch.randn(10, 5),
|
|
torch.randn(10),
|
|
torch.randn(5),
|
|
constructor
|
|
)
|
|
# non-contiguous parameters
|
|
self._test_basic_cases_template(
|
|
torch.randn(10, 5, 2)[..., 0],
|
|
torch.randn(10, 2)[..., 0],
|
|
torch.randn(5),
|
|
constructor
|
|
)
|
|
# CUDA
|
|
if not torch.cuda.is_available():
|
|
return
|
|
self._test_basic_cases_template(
|
|
torch.randn(10, 5).cuda(),
|
|
torch.randn(10).cuda(),
|
|
torch.randn(5).cuda(),
|
|
constructor
|
|
)
|
|
# Multi-GPU
|
|
if not torch.cuda.device_count() > 1 or ignore_multidevice:
|
|
return
|
|
self._test_basic_cases_template(
|
|
torch.randn(10, 5).cuda(0),
|
|
torch.randn(10).cuda(1),
|
|
torch.randn(5).cuda(0),
|
|
constructor
|
|
)
|
|
|
|
def _build_params_dict(self, weight, bias, **kwargs):
|
|
return [dict(params=[weight]), dict(params=[bias], **kwargs)]
|
|
|
|
def _build_params_dict_single(self, weight, bias, **kwargs):
|
|
return [dict(params=bias, **kwargs)]
|
|
|
|
def test_sgd(self):
|
|
self._test_rosenbrock(
|
|
lambda params: optim.SGD(params, lr=1e-3),
|
|
wrap_old_fn(old_optim.sgd, learningRate=1e-3)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.SGD(params, lr=1e-3, momentum=0.9,
|
|
dampening=0, weight_decay=1e-4),
|
|
wrap_old_fn(old_optim.sgd, learningRate=1e-3, momentum=0.9,
|
|
dampening=0, weightDecay=1e-4)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.SGD([weight, bias], lr=1e-3)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.SGD(
|
|
self._build_params_dict(weight, bias, lr=1e-2),
|
|
lr=1e-3)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.SGD(
|
|
self._build_params_dict_single(weight, bias, lr=1e-2),
|
|
lr=1e-3)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.SGD(
|
|
self._build_params_dict_single(weight, bias, lr=1e-2))
|
|
)
|
|
with self.assertRaisesRegex(ValueError, "Invalid momentum value: -0.5"):
|
|
optim.SGD(None, lr=1e-2, momentum=-0.5)
|
|
|
|
def test_sgd_sparse(self):
|
|
self._test_rosenbrock_sparse(
|
|
lambda params: optim.SGD(params, lr=5e-3)
|
|
)
|
|
|
|
def test_adam(self):
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adam(params, lr=1e-2),
|
|
wrap_old_fn(old_optim.adam, learningRate=1e-2)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adam(params, lr=1e-2, weight_decay=1e-2),
|
|
wrap_old_fn(old_optim.adam, learningRate=1e-2, weightDecay=1e-2)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adam([weight, bias], lr=1e-3)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adam(
|
|
self._build_params_dict(weight, bias, lr=1e-2),
|
|
lr=1e-3)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adam([weight, bias], lr=1e-3,
|
|
amsgrad=True)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adam(
|
|
self._build_params_dict(weight, bias, lr=1e-2),
|
|
lr=1e-3, amsgrad=True)
|
|
)
|
|
with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"):
|
|
optim.Adam(None, lr=1e-2, betas=(1.0, 0.0))
|
|
|
|
def test_sparse_adam(self):
|
|
self._test_rosenbrock_sparse(
|
|
lambda params: optim.SparseAdam(params, lr=4e-2),
|
|
True
|
|
)
|
|
with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"):
|
|
optim.SparseAdam(None, lr=1e-2, betas=(1.0, 0.0))
|
|
|
|
def test_adadelta(self):
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adadelta(params),
|
|
wrap_old_fn(old_optim.adadelta)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adadelta(params, rho=0.95),
|
|
wrap_old_fn(old_optim.adadelta, rho=0.95)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adadelta(params, weight_decay=1e-2),
|
|
wrap_old_fn(old_optim.adadelta, weightDecay=1e-2)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adadelta([weight, bias])
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adadelta(
|
|
self._build_params_dict(weight, bias, rho=0.95))
|
|
)
|
|
with self.assertRaisesRegex(ValueError, "Invalid rho value: 1.1"):
|
|
optim.Adadelta(None, lr=1e-2, rho=1.1)
|
|
|
|
def test_adagrad(self):
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adagrad(params, lr=1e-1),
|
|
wrap_old_fn(old_optim.adagrad, learningRate=1e-1)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adagrad(params, lr=1e-1, lr_decay=1e-3),
|
|
wrap_old_fn(old_optim.adagrad, learningRate=1e-1, learningRateDecay=1e-3)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adagrad(params, lr=1e-1, weight_decay=1e-2),
|
|
wrap_old_fn(old_optim.adagrad, learningRate=1e-1, weightDecay=1e-2)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adagrad([weight, bias], lr=1e-1)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adagrad([weight, bias], lr=1e-1,
|
|
initial_accumulator_value=0.1)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adagrad(
|
|
self._build_params_dict(weight, bias, lr=1e-2),
|
|
lr=1e-1)
|
|
)
|
|
with self.assertRaisesRegex(ValueError, "Invalid lr_decay value: -0.5"):
|
|
optim.Adagrad(None, lr=1e-2, lr_decay=-0.5)
|
|
|
|
def test_adagrad_sparse(self):
|
|
self._test_rosenbrock_sparse(
|
|
lambda params: optim.Adagrad(params, lr=1e-1)
|
|
)
|
|
|
|
def test_adamax(self):
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adamax(params, lr=1e-1),
|
|
wrap_old_fn(old_optim.adamax, learningRate=1e-1)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adamax(params, lr=1e-1, weight_decay=1e-2),
|
|
wrap_old_fn(old_optim.adamax, learningRate=1e-1, weightDecay=1e-2)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Adamax(params, lr=1e-1, betas=(0.95, 0.998)),
|
|
wrap_old_fn(old_optim.adamax, learningRate=1e-1, beta1=0.95, beta2=0.998)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adamax([weight, bias], lr=1e-1)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Adamax(
|
|
self._build_params_dict(weight, bias, lr=1e-2),
|
|
lr=1e-1)
|
|
)
|
|
with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 1: 1.0"):
|
|
optim.Adamax(None, lr=1e-2, betas=(0.0, 1.0))
|
|
|
|
def test_rmsprop(self):
|
|
self._test_rosenbrock(
|
|
lambda params: optim.RMSprop(params, lr=1e-2),
|
|
wrap_old_fn(old_optim.rmsprop, learningRate=1e-2)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.RMSprop(params, lr=1e-2, weight_decay=1e-2),
|
|
wrap_old_fn(old_optim.rmsprop, learningRate=1e-2, weightDecay=1e-2)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.RMSprop(params, lr=1e-2, alpha=0.95),
|
|
wrap_old_fn(old_optim.rmsprop, learningRate=1e-2, alpha=0.95)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.RMSprop([weight, bias], lr=1e-2)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.RMSprop(
|
|
self._build_params_dict(weight, bias, lr=1e-3),
|
|
lr=1e-2)
|
|
)
|
|
with self.assertRaisesRegex(ValueError, "Invalid momentum value: -1.0"):
|
|
optim.RMSprop(None, lr=1e-2, momentum=-1.0)
|
|
|
|
def test_asgd(self):
|
|
self._test_rosenbrock(
|
|
lambda params: optim.ASGD(params, lr=1e-3),
|
|
wrap_old_fn(old_optim.asgd, eta0=1e-3)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.ASGD(params, lr=1e-3, alpha=0.8),
|
|
wrap_old_fn(old_optim.asgd, eta0=1e-3, alpha=0.8)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.ASGD(params, lr=1e-3, t0=1e3),
|
|
wrap_old_fn(old_optim.asgd, eta0=1e-3, t0=1e3)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.ASGD([weight, bias], lr=1e-3, t0=100)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.ASGD(
|
|
self._build_params_dict(weight, bias, lr=1e-2),
|
|
lr=1e-3, t0=100)
|
|
)
|
|
with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -0.5"):
|
|
optim.ASGD(None, lr=1e-2, weight_decay=-0.5)
|
|
|
|
def test_rprop(self):
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Rprop(params, lr=1e-3),
|
|
wrap_old_fn(old_optim.rprop, stepsize=1e-3)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Rprop(params, lr=1e-3, etas=(0.6, 1.1)),
|
|
wrap_old_fn(old_optim.rprop, stepsize=1e-3, etaminus=0.6, etaplus=1.1)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.Rprop(params, lr=1e-3, step_sizes=(1e-4, 3)),
|
|
wrap_old_fn(old_optim.rprop, stepsize=1e-3, stepsizemin=1e-4, stepsizemax=3)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Rprop([weight, bias], lr=1e-3)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.Rprop(
|
|
self._build_params_dict(weight, bias, lr=1e-2),
|
|
lr=1e-3)
|
|
)
|
|
with self.assertRaisesRegex(ValueError, "Invalid eta values: 1.0, 0.5"):
|
|
optim.Rprop(None, lr=1e-2, etas=(1.0, 0.5))
|
|
|
|
def test_lbfgs(self):
|
|
self._test_rosenbrock(
|
|
lambda params: optim.LBFGS(params),
|
|
wrap_old_fn(old_optim.lbfgs)
|
|
)
|
|
self._test_rosenbrock(
|
|
lambda params: optim.LBFGS(params, lr=5e-2, max_iter=5),
|
|
wrap_old_fn(old_optim.lbfgs, learningRate=5e-2, maxIter=5)
|
|
)
|
|
self._test_basic_cases(
|
|
lambda weight, bias: optim.LBFGS([weight, bias]),
|
|
ignore_multidevice=True
|
|
)
|
|
|
|
def test_invalid_param_type(self):
|
|
with self.assertRaises(TypeError):
|
|
optim.SGD(Variable(torch.randn(5, 5)), lr=3)
|
|
|
|
|
|
class SchedulerTestNet(torch.nn.Module):
|
|
def __init__(self):
|
|
super(SchedulerTestNet, self).__init__()
|
|
self.conv1 = torch.nn.Conv2d(1, 1, 1)
|
|
self.conv2 = torch.nn.Conv2d(1, 1, 1)
|
|
|
|
def forward(self, x):
|
|
return self.conv2(F.relu(self.conv1(x)))
|
|
|
|
|
|
class TestLRScheduler(TestCase):
|
|
def setUp(self):
|
|
self.net = SchedulerTestNet()
|
|
self.opt = SGD(
|
|
[{'params': self.net.conv1.parameters()}, {'params': self.net.conv2.parameters(), 'lr': 0.5}],
|
|
lr=0.05)
|
|
|
|
def test_step_lr(self):
|
|
# lr = 0.05 if epoch < 3
|
|
# lr = 0.005 if 30 <= epoch < 6
|
|
# lr = 0.0005 if epoch >= 9
|
|
epochs = 10
|
|
single_targets = [0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005] * 3
|
|
targets = [single_targets, list(map(lambda x: x * epochs, single_targets))]
|
|
scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
|
|
self._test(scheduler, targets, epochs)
|
|
|
|
def test_multi_step_lr(self):
|
|
# lr = 0.05 if epoch < 2
|
|
# lr = 0.005 if 2 <= epoch < 5
|
|
# lr = 0.0005 if epoch < 9
|
|
# lr = 0.00005 if epoch >= 9
|
|
epochs = 10
|
|
single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3
|
|
targets = [single_targets, list(map(lambda x: x * epochs, single_targets))]
|
|
scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
|
|
self._test(scheduler, targets, epochs)
|
|
|
|
def test_exp_lr(self):
|
|
epochs = 10
|
|
single_targets = [0.05 * (0.9 ** x) for x in range(epochs)]
|
|
targets = [single_targets, list(map(lambda x: x * epochs, single_targets))]
|
|
scheduler = ExponentialLR(self.opt, gamma=0.9)
|
|
self._test(scheduler, targets, epochs)
|
|
|
|
def test_cos_anneal_lr(self):
|
|
epochs = 10
|
|
eta_min = 1e-10
|
|
single_targets = [eta_min + (0.05 - eta_min) *
|
|
(1 + math.cos(math.pi * x / epochs)) / 2
|
|
for x in range(epochs)]
|
|
targets = [single_targets, list(map(lambda x: x * epochs, single_targets))]
|
|
scheduler = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min)
|
|
self._test(scheduler, targets, epochs)
|
|
|
|
def test_reduce_lr_on_plateau1(self):
|
|
epochs = 10
|
|
for param_group in self.opt.param_groups:
|
|
param_group['lr'] = 0.5
|
|
targets = [[0.5] * 20]
|
|
metrics = [10 - i * 0.0167 for i in range(20)]
|
|
scheduler = ReduceLROnPlateau(self.opt, threshold_mode='abs', mode='min',
|
|
threshold=0.01, patience=5, cooldown=5)
|
|
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
|
|
|
def test_reduce_lr_on_plateau2(self):
|
|
epochs = 22
|
|
for param_group in self.opt.param_groups:
|
|
param_group['lr'] = 0.5
|
|
targets = [[0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2]
|
|
metrics = [10 - i * 0.0165 for i in range(22)]
|
|
scheduler = ReduceLROnPlateau(self.opt, patience=5, cooldown=0, threshold_mode='abs',
|
|
mode='min', threshold=0.1)
|
|
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
|
|
|
def test_reduce_lr_on_plateau3(self):
|
|
epochs = 22
|
|
for param_group in self.opt.param_groups:
|
|
param_group['lr'] = 0.5
|
|
targets = [[0.5] * (2 + 6) + [0.05] * (5 + 6) + [0.005] * 4]
|
|
metrics = [-0.8] * 2 + [-0.234] * 20
|
|
scheduler = ReduceLROnPlateau(self.opt, mode='max', patience=5, cooldown=5,
|
|
threshold_mode='abs')
|
|
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
|
|
|
def test_reduce_lr_on_plateau4(self):
|
|
epochs = 20
|
|
for param_group in self.opt.param_groups:
|
|
param_group['lr'] = 0.5
|
|
targets = [[0.5] * 20]
|
|
metrics = [1.5 * (1.025 ** i) for i in range(20)] # 1.025 > 1.1**0.25
|
|
scheduler = ReduceLROnPlateau(self.opt, mode='max', patience=3,
|
|
threshold_mode='rel', threshold=0.1)
|
|
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
|
|
|
def test_reduce_lr_on_plateau5(self):
|
|
epochs = 20
|
|
for param_group in self.opt.param_groups:
|
|
param_group['lr'] = 0.5
|
|
targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4]
|
|
metrics = [1.5 * (1.005 ** i) for i in range(20)]
|
|
scheduler = ReduceLROnPlateau(self.opt, mode='max', threshold_mode='rel',
|
|
threshold=0.1, patience=5, cooldown=5)
|
|
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
|
|
|
def test_reduce_lr_on_plateau6(self):
|
|
epochs = 20
|
|
for param_group in self.opt.param_groups:
|
|
param_group['lr'] = 0.5
|
|
targets = [[0.5] * 20]
|
|
metrics = [1.5 * (0.85 ** i) for i in range(20)]
|
|
scheduler = ReduceLROnPlateau(self.opt, mode='min', threshold_mode='rel',
|
|
threshold=0.1)
|
|
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
|
|
|
def test_reduce_lr_on_plateau7(self):
|
|
epochs = 20
|
|
for param_group in self.opt.param_groups:
|
|
param_group['lr'] = 0.5
|
|
targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4]
|
|
metrics = [1] * 7 + [0.6] + [0.5] * 12
|
|
scheduler = ReduceLROnPlateau(self.opt, mode='min', threshold_mode='rel',
|
|
threshold=0.1, patience=5, cooldown=5)
|
|
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
|
|
|
def test_reduce_lr_on_plateau8(self):
|
|
epochs = 20
|
|
for param_group in self.opt.param_groups:
|
|
param_group['lr'] = 0.5
|
|
targets = [[0.5] * 6 + [0.4] * 14, [0.5] * 6 + [0.3] * 14]
|
|
metrics = [1.5 * (1.005 ** i) for i in range(20)]
|
|
scheduler = ReduceLROnPlateau(self.opt, mode='max', threshold_mode='rel', min_lr=[0.4, 0.3],
|
|
threshold=0.1, patience=5, cooldown=5)
|
|
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
|
|
|
def test_lambda_lr(self):
|
|
epochs = 10
|
|
self.opt.param_groups[0]['lr'] = 0.05
|
|
self.opt.param_groups[1]['lr'] = 0.4
|
|
targets = [[0.05 * (0.9 ** x) for x in range(epochs)], [0.4 * (0.8 ** x) for x in range(epochs)]]
|
|
scheduler = LambdaLR(self.opt,
|
|
lr_lambda=[lambda x1: 0.9 ** x1, lambda x2: 0.8 ** x2])
|
|
self._test(scheduler, targets, epochs)
|
|
|
|
def test_step_lr_state_dict(self):
|
|
self._check_scheduler_state_dict(
|
|
lambda: StepLR(self.opt, gamma=0.1, step_size=3),
|
|
lambda: StepLR(self.opt, gamma=0.01 / 2, step_size=1))
|
|
|
|
def test_multi_step_lr_state_dict(self):
|
|
self._check_scheduler_state_dict(
|
|
lambda: MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]),
|
|
lambda: MultiStepLR(self.opt, gamma=0.01, milestones=[1, 4, 6]))
|
|
|
|
def test_exp_step_lr_state_dict(self):
|
|
self._check_scheduler_state_dict(
|
|
lambda: ExponentialLR(self.opt, gamma=0.1),
|
|
lambda: ExponentialLR(self.opt, gamma=0.01))
|
|
|
|
def test_cosine_lr_state_dict(self):
|
|
epochs = 10
|
|
eta_min = 1e-10
|
|
self._check_scheduler_state_dict(
|
|
lambda: CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min),
|
|
lambda: CosineAnnealingLR(self.opt, T_max=epochs // 2, eta_min=eta_min / 2),
|
|
epochs=epochs)
|
|
|
|
def _check_scheduler_state_dict(self, constr, constr2, epochs=10):
|
|
scheduler = constr()
|
|
for _ in range(epochs):
|
|
scheduler.step()
|
|
scheduler_copy = constr2()
|
|
scheduler_copy.load_state_dict(scheduler.state_dict())
|
|
for key in scheduler.__dict__.keys():
|
|
if key != 'optimizer':
|
|
self.assertAlmostEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key])
|
|
self.assertAlmostEqual(scheduler.get_lr(), scheduler_copy.get_lr())
|
|
|
|
def _test(self, scheduler, targets, epochs=10):
|
|
for epoch in range(epochs):
|
|
scheduler.step(epoch)
|
|
for param_group, target in zip(self.opt.param_groups, targets):
|
|
self.assertAlmostEqual(target[epoch], param_group['lr'],
|
|
msg='LR is wrong in epoch {}: expected {}, got {}'.format(
|
|
epoch, target[epoch], param_group['lr']), delta=1e-5)
|
|
|
|
def _test_reduce_lr_on_plateau(self, scheduler, targets, metrics, epochs=10, verbose=False):
|
|
for epoch in range(epochs):
|
|
scheduler.step(metrics[epoch])
|
|
if verbose:
|
|
print('epoch{}:\tlr={}'.format(epoch, self.opt.param_groups[0]['lr']))
|
|
for param_group, target in zip(self.opt.param_groups, targets):
|
|
self.assertAlmostEqual(target[epoch], param_group['lr'],
|
|
msg='LR is wrong in epoch {}: expected {}, got {}'.format(
|
|
epoch, target[epoch], param_group['lr']), delta=1e-5)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|