mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14342 Sometimes, when we are creating a TaskGroup, we are in fact creating a TaskGroup for a distributed job. In some cases, we may want to register a few nets as "remote" to a TaskGroup. The remote net should have sufficient attributes on where they should be executed later on. This diff adds the remote net attribute to the TaskGroup class. It exposes two minimal functionalities: adding a remote net, and getting all remote nets added to a TaskGroup. Reviewed By: d4l3k Differential Revision: D13188320 fbshipit-source-id: efe947aec30817e9512a5e18be985713b9356bdc
671 lines
23 KiB
Python
671 lines
23 KiB
Python
## @package task
|
|
# Module caffe2.python.task
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core, context
|
|
from caffe2.python.schema import Field, from_blob_list
|
|
from collections import defaultdict
|
|
from copy import copy
|
|
from future.utils import viewitems
|
|
|
|
|
|
def _merge_node_kwargs(a, b):
|
|
# TODO(azzolini): consistency checks
|
|
if a is None:
|
|
return b
|
|
if b is None:
|
|
return a
|
|
c = copy(a)
|
|
c.update(b)
|
|
return c
|
|
|
|
|
|
@context.define_context(allow_default=True)
|
|
class Cluster(object):
|
|
"""
|
|
Context that keeps track of all the node names used.
|
|
Users shouldn't have to use them directly, since a Cluster is automatically
|
|
generated at the first usage of 'Node'.
|
|
"""
|
|
|
|
def __init__(self):
|
|
# list instead of set to keep order
|
|
self._nodes = []
|
|
self._node_kwargs = {}
|
|
|
|
def add_node(self, node):
|
|
if str(node) not in self._nodes:
|
|
self._nodes.append(str(node))
|
|
self._node_kwargs[str(node)] = _merge_node_kwargs(
|
|
node.kwargs(),
|
|
self._node_kwargs.get(str(node)))
|
|
|
|
def nodes(self):
|
|
"""
|
|
Returns the list of unique node names used within this context.
|
|
"""
|
|
return self._nodes
|
|
|
|
def node_kwargs(self):
|
|
return self._node_kwargs
|
|
|
|
|
|
@context.define_context(allow_default=True)
|
|
class Node(object):
|
|
"""
|
|
A Node context is used to indicate that all Tasks instantiated within will
|
|
run on the given node name. (Only the name of the node actually counts.)
|
|
Example:
|
|
|
|
with TaskGroup() as tg:
|
|
with Node('node1'):
|
|
s1 = execution_step(...)
|
|
Task(step=s1)
|
|
with Node('node2'):
|
|
s2 = execution_step(...)
|
|
with Node('node1'):
|
|
s3 = execution_step(...)
|
|
|
|
In this example, all three execution steps will run in parallel.
|
|
Moreover, s1 and s3 will run on the same node, and can see each
|
|
others blobs.
|
|
|
|
Additionally, a Node can be passed implementation-specific kwargs,
|
|
in order to specify properties of the node.
|
|
"""
|
|
|
|
def __init__(self, node='local', **kwargs):
|
|
self._name = str(node)
|
|
self._kwargs = kwargs
|
|
Cluster.current().add_node(self)
|
|
|
|
def __str__(self):
|
|
return self._name
|
|
|
|
def kwargs(self):
|
|
return self._kwargs
|
|
|
|
|
|
class WorkspaceType(object):
|
|
"""
|
|
Determines whether tasks of a TaskGroup will run directly at the global
|
|
workspace, which is kept alive across runs, or whether a new child
|
|
workspace will be created for the run and destroyed afterwards.
|
|
"""
|
|
PRIVATE = 'private'
|
|
GLOBAL = 'global'
|
|
|
|
|
|
def get_setup_nets(key, steps_or_nets, target):
|
|
init_net = core.Net(key + '/init')
|
|
exit_net = core.Net(key + '/exit')
|
|
init_nets = []
|
|
exit_nets = []
|
|
objs = []
|
|
for step_or_net in steps_or_nets:
|
|
if hasattr(step_or_net, 'get_all_attributes'):
|
|
objs += step_or_net.get_all_attributes(key)
|
|
elif hasattr(step_or_net, 'get_attributes'):
|
|
objs += step_or_net.get_attributes(key)
|
|
for obj in objs:
|
|
# these are needed in order to allow nesting of TaskGroup, which
|
|
# is a feature not yet implemented.
|
|
if hasattr(obj, '_setup_used') and obj._setup_used:
|
|
continue
|
|
if hasattr(obj, '_setup_target') and obj._setup_target != target:
|
|
continue
|
|
if hasattr(obj, 'setup'):
|
|
nets = obj.setup(init_net)
|
|
if isinstance(nets, (list, tuple)):
|
|
init_nets += nets
|
|
elif isinstance(nets, (core.Net, core.ExecutionStep)):
|
|
init_nets.append(nets)
|
|
elif nets is not None:
|
|
raise TypeError('Unsupported type for setup: %s' % type(nets))
|
|
obj._setup_used = True
|
|
if hasattr(obj, 'exit'):
|
|
nets = obj.exit(exit_net)
|
|
if isinstance(nets, (list, tuple)):
|
|
exit_nets += nets
|
|
elif isinstance(nets, (core.Net, core.ExecutionStep)):
|
|
exit_nets.append(nets)
|
|
elif nets is not None:
|
|
raise TypeError('Unsupported type for setup: %s' % type(nets))
|
|
obj._setup_used = True
|
|
|
|
if len(init_net.Proto().op) > 0:
|
|
init_nets.insert(0, init_net)
|
|
if len(exit_net.Proto().op) > 0:
|
|
exit_nets.insert(0, exit_net)
|
|
return init_nets, exit_nets
|
|
|
|
|
|
def add_setup_steps(step, init_nets, exit_nets, name):
|
|
if not init_nets and not exit_nets:
|
|
return step
|
|
steps = []
|
|
if init_nets:
|
|
steps.append(core.execution_step('%s:init' % name, init_nets))
|
|
steps.append(step)
|
|
if len(exit_nets) > 0:
|
|
steps.append(core.execution_step('%s:exit' % name, exit_nets))
|
|
return core.execution_step(name, steps)
|
|
|
|
|
|
@context.define_context(allow_default=False)
|
|
class TaskGroup(object):
|
|
"""
|
|
Context that gathers tasks which will run concurrently, potentially on
|
|
multiple nodes. All tasks in the same node will share the same workspace
|
|
and thus can share blobs, while tasks running in different nodes won't
|
|
be able to directly share data.
|
|
|
|
All tasks of the task group will start concurrently, and the task group
|
|
will finish execution when the last task of the group finishes.
|
|
|
|
Example:
|
|
# supose that s1 ... s5 are execution steps or nets.
|
|
with TaskGroup() as tg:
|
|
# these tasks go to default node 'local'
|
|
Task(step=s1)
|
|
Task(step=s2)
|
|
|
|
with Node('n2'):
|
|
Task(step=s3)
|
|
with Node('n1'):
|
|
Task(step=s4)
|
|
with Node('n2'):
|
|
Task(step=s5)
|
|
|
|
# this will run all steps in parallel.
|
|
# s1 and s2 will run at default node 'local'
|
|
# s3 and s5 will run at node 'n2'
|
|
# s4 will run at node 'n1'
|
|
session.run(tg)
|
|
"""
|
|
LOCAL_SETUP = 'local_setup'
|
|
|
|
def __init__(self, workspace_type=None):
|
|
self._plan_cache = None
|
|
self._tasks = []
|
|
self._already_used = False
|
|
self._prev_active = None
|
|
self._tasks_to_add = []
|
|
self._report_nets = {}
|
|
self._report_steps = []
|
|
self._workspace_type = workspace_type
|
|
self._tasks_by_node = None
|
|
self._remote_nets = []
|
|
|
|
def add_remote_net(self, net):
|
|
self._remote_nets.append(net)
|
|
|
|
def remote_nets(self):
|
|
return self._remote_nets
|
|
|
|
def add(self, task):
|
|
assert not self._already_used, (
|
|
'Cannot add Task to an already used TaskGroup.')
|
|
assert (
|
|
self._workspace_type is None or
|
|
task._workspace_type is None or
|
|
self._workspace_type == task._workspace_type)
|
|
if task._workspace_type is None:
|
|
task._workspace_type = (
|
|
self._workspace_type or WorkspaceType.PRIVATE)
|
|
if self._workspace_type is None:
|
|
self._workspace_type = task._workspace_type
|
|
task._notify_used()
|
|
self._tasks.append(task)
|
|
|
|
def tasks(self):
|
|
for task in self._tasks_to_add:
|
|
self.add(task)
|
|
self._tasks_to_add = []
|
|
self._already_used = True
|
|
return self._tasks
|
|
|
|
def num_registered_tasks(self):
|
|
return len(self._tasks_to_add) + len(self._tasks)
|
|
|
|
def used_nodes(self):
|
|
# use list to keep order
|
|
used = []
|
|
for task in self._tasks + self._tasks_to_add:
|
|
if task.node not in used:
|
|
used.append(task.node)
|
|
return used
|
|
|
|
def report_step(self, step=None, node=None, interval_ms=1000):
|
|
"""
|
|
Add a "report step" to this TaskGroup. This step will run repeatedly
|
|
every `interval_ms` milliseconds for the duration of the TaskGroup
|
|
execution on each of the nodes. It is guaranteed that this step
|
|
will be run at least once after every Task in the node has finished.
|
|
"""
|
|
step = core.to_execution_step(step)
|
|
step.RunEveryMillis(interval_ms)
|
|
self._report_steps.append((str(node or Node.current(node)), step))
|
|
|
|
def report_net(self, net=None, node=None, report_interval=5):
|
|
"""
|
|
DEPRECATED. Use report_step instead.
|
|
"""
|
|
node = str(node or Node.current(node))
|
|
assert net is None or node not in self._report_nets
|
|
if node not in self._report_nets:
|
|
self._report_nets[node] = (
|
|
net if net else core.Net('%s/reporter' % node),
|
|
report_interval)
|
|
return self._report_nets[node][0]
|
|
|
|
def tasks_by_node(self, node_remap=None):
|
|
# tasks_by_node can't be called twice because the setup won't
|
|
# work properly a second time.
|
|
node_map = {}
|
|
for task in self.tasks():
|
|
node_map[task.node] =\
|
|
node_remap(task.node) if node_remap else task.node
|
|
if self._tasks_by_node is not None:
|
|
tasks_by_node, prev_node_map = self._tasks_by_node
|
|
assert prev_node_map == node_map, (
|
|
'Cannot call tasks_by_node multiple times.')
|
|
return tasks_by_node
|
|
|
|
# now we have report_steps. report_net is deprecated
|
|
for node, (net, interval) in viewitems(self._report_nets):
|
|
self.report_step(net, node=node, interval_ms=interval * 1000)
|
|
self._report_nets = {}
|
|
|
|
tasks_by_node = defaultdict(list)
|
|
for task in self.tasks():
|
|
mapped_node = node_map[task.node]
|
|
tasks_by_node[mapped_node].append(task)
|
|
|
|
report_steps_by_node = defaultdict(list)
|
|
for original_node, step in self._report_steps:
|
|
report_steps_by_node[node_map[original_node]].append(step)
|
|
|
|
grouped_by_node = TaskGroup()
|
|
for node, tasks in viewitems(tasks_by_node):
|
|
report_steps = report_steps_by_node[node]
|
|
node_inits, node_exits = get_setup_nets(
|
|
TaskGroup.LOCAL_SETUP,
|
|
[t.get_step() for t in tasks] + report_steps,
|
|
self)
|
|
# shortcut for single task with no queue
|
|
steps = report_steps
|
|
outputs = []
|
|
grouped_workspace_type = WorkspaceType.PRIVATE
|
|
for task in tasks:
|
|
step = task.get_step()
|
|
step.SetCreateWorkspace(
|
|
task.workspace_type() == WorkspaceType.PRIVATE)
|
|
if step is not None:
|
|
steps.append(step)
|
|
outputs += task.outputs()
|
|
# If any of the tasks in the node uses the global workspace,
|
|
# then set the grouped task to use the global workspace as well
|
|
if task.workspace_type() == WorkspaceType.GLOBAL:
|
|
grouped_workspace_type = WorkspaceType.GLOBAL
|
|
if len(steps) == 0:
|
|
steps.append(core.execution_step('empty', []))
|
|
if len(steps) == 1:
|
|
step = steps[0]
|
|
else:
|
|
step = core.execution_step(
|
|
'%s:body' % node, steps, concurrent_substeps=True)
|
|
if len(node_inits) > 0 or len(node_exits) > 0:
|
|
steps = []
|
|
if len(node_inits) > 0:
|
|
steps.append(
|
|
core.execution_step('%s:init' % node, node_inits))
|
|
steps.append(step)
|
|
if len(node_exits) > 0:
|
|
steps.append(
|
|
core.execution_step('%s:exit' % node, node_exits))
|
|
step = core.execution_step(node, steps)
|
|
Task(
|
|
node=node, step=step, outputs=outputs,
|
|
name='grouped_by_node',
|
|
group=grouped_by_node, workspace_type=grouped_workspace_type)
|
|
self._tasks_by_node = (grouped_by_node, node_map)
|
|
return grouped_by_node
|
|
|
|
def to_task(self, node=None):
|
|
node = str(Node.current(node))
|
|
tasks = self.tasks_by_node(lambda x: node).tasks()
|
|
if len(tasks) == 0:
|
|
return Task()
|
|
return tasks[0]
|
|
|
|
def workspace_type(self):
|
|
return self._workspace_type
|
|
|
|
|
|
class TaskOutput(object):
|
|
"""
|
|
Represents the output of a task. An output can be a blob,
|
|
a list of blob, or a record.
|
|
"""
|
|
|
|
def __init__(self, names):
|
|
self._schema = None
|
|
self._is_scalar = False
|
|
if isinstance(names, Field):
|
|
self._schema = names
|
|
names = self._schema.field_blobs()
|
|
self._is_scalar = type(names) not in (tuple, list)
|
|
if self._is_scalar:
|
|
names = [names]
|
|
self.names = names
|
|
self._values = None
|
|
|
|
def set(self, values, _fetch_func=None):
|
|
assert len(values) == len(self.names)
|
|
self._values = values
|
|
self._fetch_func = _fetch_func
|
|
|
|
def get(self):
|
|
assert self._values is not None, 'Output value not set yet.'
|
|
if self._is_scalar:
|
|
return self._values[0]
|
|
elif self._schema:
|
|
return from_blob_list(self._schema, self._values)
|
|
else:
|
|
return self._values
|
|
|
|
def fetch(self):
|
|
assert self._fetch_func is not None, (
|
|
'Cannot fetch value for this output.')
|
|
fetched_vals = [self._fetch_func(v) for v in self._values]
|
|
if self._is_scalar:
|
|
return fetched_vals[0]
|
|
elif self._schema:
|
|
return from_blob_list(self._schema, fetched_vals)
|
|
else:
|
|
return fetched_vals
|
|
|
|
|
|
def final_output(blob_or_record):
|
|
"""
|
|
Adds an output to the current Task, or if no task is active,
|
|
create a dummy task that returns the given blob or record
|
|
to the client. This will return the value of the blob or record when
|
|
the last task of the TaskGroup for a given node finishes.
|
|
"""
|
|
cur_task = Task.current(required=False) or Task()
|
|
return cur_task.add_output(blob_or_record)
|
|
|
|
|
|
class TaskOutputList(object):
|
|
""" Keeps a list of outputs for a task """
|
|
def __init__(self, outputs=None):
|
|
self.outputs = outputs or []
|
|
|
|
def names(self):
|
|
"""
|
|
Retrive the output names.
|
|
TODO(azzolini): make this schema-based.
|
|
"""
|
|
names = []
|
|
for o in self.outputs:
|
|
names += o.names
|
|
return names
|
|
|
|
def set_values(self, values, _fetch_func=None):
|
|
offset = 0
|
|
for o in self.outputs:
|
|
num = len(o.names)
|
|
o.set(values[offset:offset + num], _fetch_func)
|
|
offset += num
|
|
assert offset == len(values), 'Wrong number of output values.'
|
|
|
|
|
|
@context.define_context()
|
|
class Task(object):
|
|
"""
|
|
A Task is composed of an execution step and zero or more outputs.
|
|
Tasks are executed in the context of a TaskGroup, which, in turn, can
|
|
be run by a Session.
|
|
|
|
Task outputs are fetched by the session at the end of the run.
|
|
|
|
The recommended way of creating a task is by using `net_builder.ops`.
|
|
Example:
|
|
|
|
from net_builder import ops
|
|
with Node('trainer'), Task(name='my_task', num_instances=2):
|
|
with ops.task_init():
|
|
globl = ops.Const(0)
|
|
with ops.task_instance_init():
|
|
local = ops.Const(0)
|
|
with ops.loop(100):
|
|
ops.Copy(globl, local)
|
|
with ops.task_instance_exit():
|
|
ops.Add([globl, local], [globl])
|
|
with ops.task_exit():
|
|
ops.Mul([globl, globl], [blobl])
|
|
|
|
The task above will create 2 instances that will run in parallel.
|
|
Each instance will copy `local` to `globl` 100 times, Then Add `local`
|
|
to `globl` once. The `Mul` will only execute once, after all the instances
|
|
of the task have finished.
|
|
"""
|
|
|
|
# TASK_SETUP runs once per task, before/after all
|
|
# concurrent task instances start/finish.
|
|
TASK_SETUP = 'task_setup'
|
|
# Setup will run once for each instance of the task.
|
|
TASK_INSTANCE_SETUP = 'task_instance_setup'
|
|
REPORT_STEP = 'report_step'
|
|
_global_names_used = set()
|
|
|
|
@staticmethod
|
|
def _get_next_name(node, group, name):
|
|
basename = str(node) + '/' + str(name)
|
|
names_used = (
|
|
Task._global_names_used
|
|
if group is None else
|
|
set(t.name for t in group._tasks_to_add))
|
|
cur_name = basename
|
|
i = 0
|
|
while cur_name in names_used:
|
|
i += 1
|
|
cur_name = '%s:%d' % (basename, i)
|
|
return cur_name
|
|
|
|
def __init__(
|
|
self, step=None, outputs=None,
|
|
workspace_type=None, group=None, node=None, name=None,
|
|
num_instances=None):
|
|
"""
|
|
Instantiate a Task and add it to the current TaskGroup and Node.
|
|
|
|
Args:
|
|
step: If provided, this task will run this ExecutionStep.
|
|
outputs: If provided, the task will return the provided outputs
|
|
to the client at completion time.
|
|
node: If provided, force task execution on the given node.
|
|
name: Name of the Task.
|
|
num_instances: If provided, this task will be cloned num_instances
|
|
times at runtime, and all instances will run
|
|
concurrently.
|
|
"""
|
|
if not name and isinstance(step, core.ExecutionStep):
|
|
name = step.Proto().name
|
|
if not name:
|
|
name = 'task'
|
|
# register this node name with active context
|
|
self.node = str(Node.current(None if node is None else Node(node)))
|
|
self.group = TaskGroup.current(group, required=False)
|
|
|
|
self.name = Task._get_next_name(self.node, self.group, name)
|
|
|
|
# may need to be temporarily removed later if Task used as a context
|
|
if self.group is not None:
|
|
self.group._tasks_to_add.append(self)
|
|
|
|
self._already_used = False
|
|
self._step = None
|
|
self._step_with_setup = None
|
|
self._outputs = []
|
|
if step is not None:
|
|
self.set_step(step)
|
|
if outputs is not None:
|
|
self.add_outputs(outputs)
|
|
|
|
self._pipeline = None
|
|
self._is_pipeline_context = False
|
|
self._workspace_type = workspace_type
|
|
self._report_net = None
|
|
self._num_instances = num_instances
|
|
|
|
def __enter__(self):
|
|
# temporarily remove from _tasks_to_add to ensure correct order
|
|
if self.group is not None:
|
|
self.group._tasks_to_add.remove(self)
|
|
self._assert_not_used()
|
|
assert self._step is None, 'This Task already has an execution step.'
|
|
from caffe2.python import net_builder
|
|
self._net_builder = net_builder.NetBuilder(_fullname=self.name)
|
|
self._net_builder.__enter__()
|
|
return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
self._net_builder.__exit__(type, value, traceback)
|
|
if type is None:
|
|
self.set_step(self._net_builder)
|
|
if self.group is not None:
|
|
self.group._tasks_to_add.append(self)
|
|
self._net_builder = None
|
|
|
|
def workspace_type(self):
|
|
return self._workspace_type
|
|
|
|
def _assert_not_used(self):
|
|
assert not self._already_used, (
|
|
'Cannot modify task since it is already been used.')
|
|
|
|
def add_output(self, output):
|
|
self._assert_not_used()
|
|
output = (
|
|
output if isinstance(output, TaskOutput) else TaskOutput(output))
|
|
self._outputs.append(output)
|
|
return output
|
|
|
|
def add_outputs(self, outputs):
|
|
self._assert_not_used()
|
|
if type(outputs) not in (list, tuple):
|
|
return self.add_output(outputs)
|
|
else:
|
|
return [self.add_output(output) for output in outputs]
|
|
|
|
def set_step(self, step):
|
|
self._assert_not_used()
|
|
self._step = core.to_execution_step(step)
|
|
|
|
def get_step(self):
|
|
if self._step_with_setup is not None:
|
|
return self._step_with_setup
|
|
|
|
if self._step is None:
|
|
self._step_with_setup = core.execution_step(self.name, [])
|
|
return self._step_with_setup
|
|
|
|
report_steps = [
|
|
s
|
|
for s in self._step.get_all_attributes(Task.REPORT_STEP)
|
|
if not hasattr(s, '_report_step_used')
|
|
]
|
|
for step in report_steps:
|
|
step._report_step_used = True
|
|
if not step.Proto().run_every_ms:
|
|
step.RunEveryMillis(1000)
|
|
task_init_nets, task_exit_nets = get_setup_nets(
|
|
Task.TASK_SETUP, [self._step] + report_steps, self)
|
|
instance_init_nets, instance_exit_nets = get_setup_nets(
|
|
Task.TASK_INSTANCE_SETUP, [self._step] + report_steps, self)
|
|
if len(self._outputs) == 0:
|
|
output_net = core.Net('%s:output' % self.name)
|
|
self.add_output(output_net.ConstantFill(
|
|
[], 1, dtype=core.DataType.INT32, value=0))
|
|
task_exit_nets.append(output_net)
|
|
|
|
# Add instance-level report steps
|
|
body = self._step if not report_steps else core.execution_step(
|
|
'%s:body' % self.name, report_steps + [self._step])
|
|
# Enclose with instance-level (thread-local) setup nets
|
|
step_with_instance_setup = add_setup_steps(
|
|
body, instance_init_nets, instance_exit_nets,
|
|
self.name + ':instance')
|
|
# Set up runtime concurrent instances
|
|
if self._num_instances and self._num_instances > 1:
|
|
step_with_instance_setup.SetCreateWorkspace(True)
|
|
step_with_instance_setup = core.execution_step(
|
|
'%s:parallel',
|
|
[step_with_instance_setup],
|
|
num_concurrent_instances=self._num_instances)
|
|
# Enclose with task-level setup nets
|
|
self._step_with_setup = add_setup_steps(
|
|
step_with_instance_setup, task_init_nets, task_exit_nets, self.name)
|
|
|
|
return self._step_with_setup
|
|
|
|
def output_list(self):
|
|
return TaskOutputList(self._outputs)
|
|
|
|
def outputs(self):
|
|
return self._outputs
|
|
|
|
def _notify_used(self):
|
|
self.get_step()
|
|
self._already_used = True
|
|
|
|
|
|
class SetupNets(object):
|
|
"""
|
|
Allow to register a list of nets to be run at initialization
|
|
and finalization of Tasks or TaskGroups.
|
|
For example, let's say you have the following:
|
|
|
|
init_net = core.Net('init')
|
|
my_val = init_net.ConstantFill([], 'my_val', value=0)
|
|
|
|
net = core.Net('counter')
|
|
net.Add([my_val, net.Const(1),], [my_val])
|
|
|
|
with TaskGroup() as task_group:
|
|
with Node('trainer'):
|
|
my_task = Task(step=[net])
|
|
|
|
In order to have `init_net` run once before `net` runs for the
|
|
first time, you can do one of the following:
|
|
|
|
net.add_attribute(Task.TASK_SETUP, SetupNets([init_net]))
|
|
|
|
or
|
|
|
|
net.add_attribute(TaskGroup.LOCAL_SETUP, SetupNets([init_net]))
|
|
|
|
- With Task.TASK_SETUP, init_net will run once at my_task startup.
|
|
- With TaskGroup.LOCAL_SETUP, init_net will run once on node 'trainer',
|
|
before any task of the task group is run on that node.
|
|
|
|
The same SetupNets object can be added to multiple nets. It will only
|
|
run once per Task/TaskGroup run.
|
|
"""
|
|
|
|
def __init__(self, init_nets=None, exit_nets=None):
|
|
self.init_nets = init_nets
|
|
self.exit_nets = exit_nets
|
|
|
|
def setup(self, init_net):
|
|
return self.init_nets
|
|
|
|
def exit(self, exit_net):
|
|
return self.exit_nets
|