pytorch/test/test_utils.py
Sam Estep e3900d2ba5 Add lint for unqualified noqa (#56272)
Summary:
As this diff shows, currently there are a couple hundred instances of raw `noqa` in the codebase, which just ignore all errors on a given line. That isn't great, so this PR changes all existing instances of that antipattern to qualify the `noqa` with respect to a specific error code, and adds a lint to prevent more of this from happening in the future.

Interestingly, some of the examples the `noqa` lint catches are genuine attempts to qualify the `noqa` with a specific error code, such as these two:
```
test/jit/test_misc.py:27:            print(f"{hello + ' ' + test}, I'm a {test}") # noqa E999
test/jit/test_misc.py:28:            print(f"format blank") # noqa F541
```
However, those are still wrong because they are [missing a colon](https://flake8.pycqa.org/en/3.9.1/user/violations.html#in-line-ignoring-errors), which actually causes the error code to be completely ignored:

- If you change them to anything else, the warnings will still be suppressed.
- If you add the necessary colons then it is revealed that `E261` was also being suppressed, unintentionally:
  ```
  test/jit/test_misc.py:27:57: E261 at least two spaces before inline comment
  test/jit/test_misc.py:28:35: E261 at least two spaces before inline comment
  ```

I did try using [flake8-noqa](https://pypi.org/project/flake8-noqa/) instead of a custom `git grep` lint, but it didn't seem to work. This PR is definitely missing some of the functionality that flake8-noqa is supposed to provide, though, so if someone can figure out how to use it, we should do that instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56272

Test Plan:
CI should pass on the tip of this PR, and we know that the lint works because the following CI run (before this PR was finished) failed:

- https://github.com/pytorch/pytorch/runs/2365189927

Reviewed By: janeyx99

Differential Revision: D27830127

Pulled By: samestep

fbshipit-source-id: d6dcf4f945ebd18cd76c46a07f3b408296864fcb
2021-04-19 13:16:18 -07:00

786 lines
28 KiB
Python

import sys
import os
import re
import shutil
import random
import subprocess
import tempfile
import textwrap
import unittest
import torch
import torch.nn as nn
import torch.utils.data
from torch.utils.data import DataLoader
import torch.cuda
from torch.utils.checkpoint import checkpoint, checkpoint_sequential
import torch.utils.cpp_extension
import torch.hub as hub
from torch.autograd._functions.utils import check_onnx_broadcast
from torch.onnx.symbolic_opset9 import _prepare_onnx_paddings
from torch.testing._internal.common_utils import load_tests, retry, IS_SANDCASTLE, IS_WINDOWS
from urllib.error import URLError
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
HAS_CUDA = torch.cuda.is_available()
from torch.testing._internal.common_utils import TestCase, run_tests
class RandomDatasetMock(torch.utils.data.Dataset):
def __getitem__(self, index):
return torch.tensor([torch.rand(1).item(), random.uniform(0, 1)])
def __len__(self):
return 1000
class TestCheckpoint(TestCase):
# This runs checkpoint_sequential on each of the nets in
# module_lists_to_compare, and compares them against the uncheckpointed model.
# To compare, it checks outputs as well as input gradients and parameter gradients
def _check_checkpoint_sequential(
self,
model,
module_lists_to_compare,
num_chunks,
input,
):
# not checkpointed
out = model(input)
out_not_checkpointed = out.detach().clone()
model.zero_grad()
out.sum().backward()
grad_not_checkpointed = {
name: param.grad.detach().clone()
for name, param in model.named_parameters()
}
input_grad_not_checkpointed = input.grad.detach().clone()
for model_to_compare in module_lists_to_compare:
# checkpointed model by passing list of modules
detached = input.detach()
detached.requires_grad = True
# pass list of modules to checkpoint
out = checkpoint_sequential(model_to_compare, num_chunks, detached)
out_checkpointed = out.detach().clone()
model.zero_grad()
out.sum().backward()
grad_checkpointed = {
name: param.grad.detach().clone()
for name, param in model.named_parameters()
}
input_grad_checkpointed = detached.grad.detach().clone()
# compare outputs as well as the gradients of input and parameters
self.assertEqual(out_checkpointed, out_not_checkpointed)
self.assertEqual(input_grad_not_checkpointed, input_grad_checkpointed)
for name in grad_checkpointed:
self.assertEqual(grad_checkpointed[name], grad_not_checkpointed[name])
# Test whether checkpoint is being triggered or not. For this, we check
# the number of times forward pass happens
def test_checkpoint_trigger(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.counter = 0
def forward(self, input_var):
self.counter += 1
return input_var
# checkpointed
modules = [Net() for _ in range(10)]
for m in modules:
self.assertEqual(m.counter, 0)
input_var = torch.randn(3, 4, requires_grad=True)
out = checkpoint_sequential(modules, 2, input_var)
for m in modules:
self.assertEqual(m.counter, 1)
out.sum().backward()
for m in modules[:(len(modules) // 2)]:
self.assertEqual(m.counter, 2)
for m in modules[(len(modules) // 2):]:
self.assertEqual(m.counter, 1)
def test_checkpoint_valid(self):
model = nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU()
)
input_var = torch.randn(1, 100, requires_grad=True)
# checkpointed
chunks = 2
modules = list(model.children())
out = checkpoint_sequential(modules, chunks, input_var)
with self.assertRaisesRegex(RuntimeError, "Checkpointing is not compatible"):
torch.autograd.grad(
outputs=[out], grad_outputs=[torch.ones(1, 5)], inputs=[input_var], create_graph=True
)
def test_checkpoint(self):
model = nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU()
)
# Compare uncheckpointed model with its checkpointed counterparts
# In addition to running checkpoint_sequential on the nn.Sequential
# instance, we also run the function on the list of functions within
# the module.
self._check_checkpoint_sequential(
model,
[list(model.children()), model],
2,
torch.randn(1, 100, requires_grad=True)
)
def test_checkpoint_module_list(self):
class ModuleListNet(nn.Module):
def __init__(self):
super(ModuleListNet, self).__init__()
module_list = [
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU(),
]
self.module_list = nn.ModuleList(module_list)
def forward(self, input):
for layer in self.module_list:
input = layer(input)
return input
model = ModuleListNet()
# Compare uncheckpointed model with its checkpointed counterparts.
self._check_checkpoint_sequential(
model,
[list(model.module_list.children()), model.module_list],
2,
torch.randn(1, 100, requires_grad=True),
)
def test_checkpoint_sequential_deprecated_multiple_args(self):
class Two(nn.Module):
def forward(self, a, b):
return a, b
model = nn.Sequential(Two())
a = torch.randn(1, 100, requires_grad=True)
b = torch.randn(1, 100, requires_grad=True)
with self.assertRaises(TypeError):
checkpoint_sequential(model, 1, a, b) # type: ignore[call-arg]
def test_checkpoint_sequential_deprecated_no_args(self):
class Noop(nn.Module):
def forward(self):
pass
model = nn.Sequential(Noop())
with self.assertRaises(TypeError):
checkpoint_sequential(model, 1) # type: ignore[call-arg]
def test_checkpoint_rng_cpu(self):
for _ in range(5):
inp = torch.randn(20000, device='cpu').requires_grad_()
phase1 = torch.nn.Dropout()
phase2 = torch.nn.Dropout()
def run_fn(input):
return phase2(input)
state = torch.get_rng_state()
out = phase1(inp)
out = checkpoint(run_fn, out)
out.sum().backward()
grad_with_checkpointing = inp.grad
torch.set_rng_state(state)
inp.grad = None
out = phase1(inp)
out = run_fn(out)
out.sum().backward()
grad_no_checkpointing = inp.grad
self.assertEqual(grad_with_checkpointing, grad_no_checkpointing)
@unittest.skipIf(not HAS_CUDA, 'No CUDA')
def test_checkpoint_rng_cuda(self):
for _ in range(5):
inp = torch.randn(20000, device='cuda').requires_grad_()
phase1 = torch.nn.Dropout()
phase2 = torch.nn.Dropout()
def run_fn(input):
return phase2(input)
state = torch.cuda.get_rng_state()
out = phase1(inp)
out = checkpoint(run_fn, out)
out.sum().backward()
grad_with_checkpointing = inp.grad
torch.cuda.set_rng_state(state)
inp.grad = None
out = phase1(inp)
out = run_fn(out)
out.sum().backward()
grad_no_checkpointing = inp.grad
self.assertEqual(grad_with_checkpointing, grad_no_checkpointing)
def test_checkpoint_non_tensor(self):
def run_fn(tensor1, tensor2):
if tensor2 is None:
return tensor1
return tensor1 + tensor2
input_var = torch.randn(1, 100, requires_grad=True)
out = checkpoint(run_fn, input_var, None)
out.sum().backward()
def test_checkpoint_non_tensor_inputs_outputs(self):
def foo(t1, t2, scale, t3):
t4 = t1 + t2 * t3
t5 = t1 * t2 + t3
t4 *= scale
t5 *= scale
return scale, t4, None, True, t5, "bar", t1
t1 = torch.rand(10, requires_grad=True)
t2 = torch.rand(10, requires_grad=True)
t3 = torch.rand(10)
scale = random.randint(0, 10)
res = checkpoint(foo, t1, t2, scale, t3)
self.assertEqual(scale, res[0])
self.assertEqual((t1 + t2 * t3) * scale, res[1])
self.assertEqual(None, res[2])
self.assertEqual(True, res[3])
self.assertEqual((t1 * t2 + t3) * scale, res[4])
self.assertEqual("bar", res[5])
self.assertEqual(t1, res[6])
# Validate running backward.
res[1].sum().backward(retain_graph=True)
res[4].sum().backward(retain_graph=True)
res[6].sum().backward()
with self.assertRaisesRegex(RuntimeError, "Trying to backward through the graph a second time"):
res[6].sum().backward()
t1_grad = t1.grad
t2_grad = t2.grad
# Reset grads, run without checkpoint and validate we receive same grads.
t1.grad = None
t2.grad = None
res = foo(t1, t2, scale, t3)
torch.autograd.backward([res[1].sum(), res[4].sum(), res[6].sum()])
self.assertEqual(t1.grad, t1_grad)
self.assertEqual(t2.grad, t2_grad)
def test_checkpoint_no_tensors(self):
def foo(t1, t2, scale, t3):
t4 = t1 + t2 * t3
t5 = t1 * t2 + t3
t4 *= scale
t5 *= scale
return scale, t4, None, True, t5, "bar", t1
t1 = random.random()
t2 = random.random()
t3 = random.random()
scale = random.randint(0, 10)
res = checkpoint(foo, t1, t2, scale, t3)
self.assertEqual(scale, res[0])
self.assertEqual((t1 + t2 * t3) * scale, res[1])
self.assertEqual(None, res[2])
self.assertEqual(True, res[3])
self.assertEqual((t1 * t2 + t3) * scale, res[4])
self.assertEqual("bar", res[5])
self.assertEqual(t1, res[6])
def test_checkpoint_partial_grad(self):
def run_fn(tensor1, tensor2):
# tensor 2 is used for other application logic
return tensor1, tensor2
input_var = torch.randn(1, 4, requires_grad=True)
input_var2 = torch.randn(1, 4, requires_grad=False)
out = checkpoint(run_fn, input_var, input_var2)
out[0].sum().backward()
def run_fn2(tensor1, tensor2):
return tensor1
input_var = torch.randn(1, 4, requires_grad=False)
input_var2 = torch.randn(1, 4, requires_grad=True)
with self.assertRaisesRegex(
RuntimeError,
r"none of output has requires_grad=True, this checkpoint\(\) is not necessary"
):
out = checkpoint(run_fn2, input_var, input_var2)
out.sum().backward()
class TestDataLoaderUtils(TestCase):
def setUp(self):
self.dataset = torch.randn(5, 3, 3, 2)
self.batch_size = 3
def test_random_seed(self):
def run():
dataloader = torch.utils.data.DataLoader(RandomDatasetMock(),
batch_size=2,
num_workers=4,
shuffle=True)
return next(iter(dataloader))
torch.manual_seed(2018)
x1 = run()
torch.manual_seed(2018)
x2 = run()
self.assertEqual(x1, x2)
def test_single_keep(self):
# self.dataset is a Tensor here; technically not a valid input because
# not a Dataset subclass, but needs to stay working so add ignore's
# for type checking with mypy
dataloader : DataLoader = DataLoader(self.dataset, # type: ignore[arg-type]
batch_size=self.batch_size,
num_workers=0,
drop_last=False)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 2)
def test_single_drop(self):
dataloader : DataLoader = DataLoader(self.dataset, # type: ignore[arg-type]
batch_size=self.batch_size,
num_workers=0,
drop_last=True)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 1)
@unittest.skip("FIXME: Intermittent CUDA out-of-memory error on Windows and time-out under ASAN")
def test_multi_keep(self):
dataloader : DataLoader = DataLoader(self.dataset, # type: ignore[arg-type]
batch_size=self.batch_size,
num_workers=2,
drop_last=False)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 2)
def test_multi_drop(self):
dataloader : DataLoader = DataLoader(self.dataset, # type: ignore[arg-type]
batch_size=self.batch_size,
num_workers=2,
drop_last=True)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 1)
test_dir = os.path.abspath(os.path.dirname(str(__file__)))
class TestFFI(TestCase):
def test_deprecated(self):
with self.assertRaisesRegex(ImportError, "torch.utils.ffi is deprecated. Please use cpp extensions instead."):
from torch.utils.ffi import create_extension # type: ignore # noqa: F401
@unittest.skipIf('SKIP_TEST_BOTTLENECK' in os.environ.keys(), 'SKIP_TEST_BOTTLENECK is set')
class TestBottleneck(TestCase):
def _run(self, command, timeout=30):
"""Returns (return-code, stdout, stderr)"""
import subprocess
p = subprocess.Popen(command, stdout=subprocess.PIPE, # noqa: P204
stderr=subprocess.PIPE, shell=True)
try:
output, err = p.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
p.kill()
output, err = p.communicate()
rc = p.returncode
output_str = output.decode("ascii")
err_str = err.decode("ascii")
return (rc, output_str, err_str)
def _run_bottleneck(self, test_file, scriptargs=''):
curdir = os.path.dirname(os.path.abspath(__file__))
filepath = '{}/{}'.format(curdir, test_file)
if scriptargs != '':
scriptargs = ' {}'.format(scriptargs)
rc, out, err = self._run(
'{} -m torch.utils.bottleneck {}{}'.format(sys.executable, filepath, scriptargs))
return rc, out, err
def _check_run_args(self):
# Check that this fails due to missing args
rc, out, err = self._run_bottleneck('bottleneck_test/test_args.py')
self.assertEqual(rc, 2, atol=0, rtol=0, msg=self._fail_msg('Missing args should error', out + err))
# This should succeed
rc, out, err = self._run_bottleneck('bottleneck_test/test_args.py', '--foo foo --bar bar')
self.assertEqual(rc, 0, atol=0, rtol=0, msg=self._fail_msg('Should pass args to script', out + err))
def _fail_msg(self, msg, output):
return '{}, output was:\n{}'.format(msg, output)
def _check_environment_summary(self, output):
results = re.search('Environment Summary', output)
self.assertIsNotNone(results, self._fail_msg('Should have Environment Summary', output))
# Up to five lines away from the heading, there should be the version number
results = re.search(r'Environment Summary.*(\n.*){,5}\nPyTorch \d+\.\d+', output)
self.assertIsNotNone(results, self._fail_msg('Should have PyTorch version', output))
def _check_cprof_summary(self, output):
results = re.search('cProfile output', output)
self.assertIsNotNone(results, self._fail_msg('Should have cProfile output', output))
# This assumes that after the cProfile output section we have
# the autograd profiler output
results = re.search(r'cProfile output.*(\n.*){6,50}\n.*autograd profiler output', output)
self.assertIsNotNone(results, self._fail_msg(
'Distance between cProfile and autograd prof out not in [6, 50] lines', output))
def _check_autograd_summary(self, output):
results = re.search('autograd profiler output', output)
self.assertIsNotNone(results, self._fail_msg('Should have autograd profiler output', output))
# This assumes that after the autograd profiler output is the end of the
# output.
results = re.search(r'autograd profiler output.*(\n.*){6,100}', output)
self.assertIsNotNone(results, self._fail_msg(
'Distance between autograd prof output and end of output not in [6, 100] lines', output))
def _check_cuda(self, output):
if HAS_CUDA:
results = re.search('CUDA mode', output)
self.assertIsNotNone(results, self._fail_msg('Should tell users CUDA', output))
else:
results = re.search('CUDA mode', output)
self.assertIsNone(results, self._fail_msg('Should not tell users about CUDA', output))
@unittest.skipIf(HAS_CUDA, 'CPU-only test')
def test_bottleneck_cpu_only(self):
rc, out, err = self._run_bottleneck('bottleneck_test/test.py')
self.assertEqual(rc, 0, msg='Run failed with\n{}'.format(err))
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
@unittest.skipIf(not HAS_CUDA, 'No CUDA')
def test_bottleneck_cuda(self):
rc, out, err = self._run_bottleneck('bottleneck_test/test_cuda.py')
self.assertEqual(rc, 0, msg='Run failed with\n{}'.format(err))
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
from torch.utils.collect_env import get_pretty_env_info
class TestCollectEnv(TestCase):
def test_smoke(self):
info_output = get_pretty_env_info()
self.assertTrue(info_output.count('\n') >= 17)
class TestONNXUtils(TestCase):
def test_prepare_onnx_paddings(self):
sizes = [2, 3, 4]
pad = [1, 2, 3, 4]
paddings = _prepare_onnx_paddings(len(sizes), pad)
self.assertEqual(paddings, [0, 3, 1, 0, 4, 2])
def test_check_onnx_broadcast(self):
def try_check_onnx_broadcast(dims1, dims2, expect_broadcast, expect_fail):
broadcast = True
fail = False
try:
broadcast = check_onnx_broadcast(dims1, dims2)
except ValueError:
fail = True
self.assertEqual(broadcast, expect_broadcast)
self.assertEqual(fail, expect_fail)
# Case 1, check the case when len(dims1) < len(dims2) and numel(dims2) > 1
dims1 = [3, 4]
dims2 = [2, 3, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 2, check the case when len(dims1) < len(dims2) and numel(dims2) == 1
dims1 = [3, 4]
dims2 = [1, 1, 1]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 3, check the case when len(dims1) > len(dims2) and numel(dims2) == 1
dims1 = [1, 1]
dims2 = [1]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 4, check the case when len(dims1) > len(dims2) and dims1[x:] == dims2
dims1 = [2, 3, 4]
dims2 = [3, 4]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 5, check the case when len(dims1) > len(dims2), but dims1[x:] != dims2
dims1 = [2, 3, 4]
dims2 = [1, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 6, check the equal case, no broadcast
dims1 = [3, 4]
dims2 = [3, 4]
try_check_onnx_broadcast(dims1, dims2, False, False)
# Case 7, check the case when len(dims1) == len(dims2), but dims1 != dims2
dims1 = [3, 4]
dims2 = [1, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 8, check the case when len(dims1) == len(dims2) and numel(s2) == 1
dims1 = [3, 4]
dims2 = [1, 1]
try_check_onnx_broadcast(dims1, dims2, True, False)
def sum_of_state_dict(state_dict):
s = 0
for _, v in state_dict.items():
s += v.sum()
return s
SUM_OF_HUB_EXAMPLE = 431080
TORCHHUB_EXAMPLE_RELEASE_URL = 'https://github.com/ailzhang/torchhub_example/releases/download/0.1/mnist_init_ones'
@unittest.skipIf(IS_SANDCASTLE, 'Sandcastle cannot ping external')
class TestHub(TestCase):
@retry(URLError, tries=3, skip_after_retries=True)
def test_load_from_github(self):
hub_model = hub.load(
'ailzhang/torchhub_example',
'mnist',
source='github',
pretrained=True,
verbose=False)
self.assertEqual(sum_of_state_dict(hub_model.state_dict()),
SUM_OF_HUB_EXAMPLE)
@retry(URLError, tries=3, skip_after_retries=True)
def test_load_from_local_dir(self):
local_dir = hub._get_cache_or_reload(
'ailzhang/torchhub_example', force_reload=False)
hub_model = hub.load(
local_dir,
'mnist',
source='local',
pretrained=True,
verbose=False)
self.assertEqual(sum_of_state_dict(hub_model.state_dict()),
SUM_OF_HUB_EXAMPLE)
@retry(URLError, tries=3, skip_after_retries=True)
def test_load_from_branch(self):
hub_model = hub.load(
'ailzhang/torchhub_example:ci/test_slash',
'mnist',
pretrained=True,
verbose=False)
self.assertEqual(sum_of_state_dict(hub_model.state_dict()),
SUM_OF_HUB_EXAMPLE)
@retry(URLError, tries=3, skip_after_retries=True)
def test_set_dir(self):
temp_dir = tempfile.gettempdir()
hub.set_dir(temp_dir)
hub_model = hub.load(
'ailzhang/torchhub_example',
'mnist',
pretrained=True,
verbose=False)
self.assertEqual(sum_of_state_dict(hub_model.state_dict()),
SUM_OF_HUB_EXAMPLE)
assert os.path.exists(temp_dir + '/ailzhang_torchhub_example_master')
shutil.rmtree(temp_dir + '/ailzhang_torchhub_example_master')
@retry(URLError, tries=3, skip_after_retries=True)
def test_list_entrypoints(self):
entry_lists = hub.list('ailzhang/torchhub_example', force_reload=True)
self.assertObjectIn('mnist', entry_lists)
@retry(URLError, tries=3, skip_after_retries=True)
def test_download_url_to_file(self):
temp_file = os.path.join(tempfile.gettempdir(), 'temp')
hub.download_url_to_file(TORCHHUB_EXAMPLE_RELEASE_URL, temp_file, progress=False)
loaded_state = torch.load(temp_file)
self.assertEqual(sum_of_state_dict(loaded_state),
SUM_OF_HUB_EXAMPLE)
@retry(URLError, tries=3, skip_after_retries=True)
def test_load_state_dict_from_url(self):
loaded_state = hub.load_state_dict_from_url(TORCHHUB_EXAMPLE_RELEASE_URL)
self.assertEqual(sum_of_state_dict(loaded_state),
SUM_OF_HUB_EXAMPLE)
@retry(URLError, tries=3, skip_after_retries=True)
def test_load_zip_checkpoint(self):
hub_model = hub.load(
'ailzhang/torchhub_example',
'mnist_zip',
pretrained=True,
verbose=False)
self.assertEqual(sum_of_state_dict(hub_model.state_dict()),
SUM_OF_HUB_EXAMPLE)
# Test the default zipfile serialization format produced by >=1.6 release.
@retry(URLError, tries=3, skip_after_retries=True)
def test_load_zip_1_6_checkpoint(self):
hub_model = hub.load(
'ailzhang/torchhub_example',
'mnist_zip_1_6',
pretrained=True,
verbose=False)
self.assertEqual(sum_of_state_dict(hub_model.state_dict()),
SUM_OF_HUB_EXAMPLE)
def test_hub_dir(self):
with tempfile.TemporaryDirectory('hub_dir') as dirname:
torch.hub.set_dir(dirname)
self.assertEqual(torch.hub.get_dir(), dirname)
@retry(URLError, tries=3, skip_after_retries=True)
def test_load_state_dict_from_url_with_name(self):
with tempfile.TemporaryDirectory('hub_dir') as dirname:
torch.hub.set_dir(dirname)
file_name = 'test_file'
loaded_state = hub.load_state_dict_from_url(TORCHHUB_EXAMPLE_RELEASE_URL, file_name=file_name)
self.assertTrue(os.path.exists(os.path.join(dirname, 'checkpoints', file_name)))
self.assertEqual(sum_of_state_dict(loaded_state),
SUM_OF_HUB_EXAMPLE)
class TestHipify(TestCase):
def test_import_hipify(self):
from torch.utils.hipify import hipify_python # noqa: F401
class TestAssert(TestCase):
def test_assert_true(self):
# verify assertions work as expected
# bool argument
torch._assert(True, "foo")
with self.assertRaisesRegex(AssertionError, "bar"):
torch._assert(False, "bar")
# tensor argument
torch._assert(torch.tensor([True], dtype=torch.bool), "foo")
with self.assertRaisesRegex(AssertionError, "bar"):
torch._assert(torch.tensor([False], dtype=torch.bool), "bar")
def test_assert_scriptable(self):
class M(torch.nn.Module):
def forward(self, x):
torch._assert(x.sum() > 0, "foo")
return x
m = M()
# scriptable
ms = torch.jit.script(m)
# data can be passed without errors
x = torch.randn(4, 4).fill_(1.0)
ms(x)
with self.assertRaisesRegex(torch.jit.Error, "foo"): # type: ignore[type-var]
ms(torch.tensor([False], dtype=torch.bool))
@unittest.skipIf(IS_SANDCASTLE, "cpp_extension is OSS only")
class TestStandaloneCPPJIT(TestCase):
def test_load_standalone(self):
build_dir = tempfile.mkdtemp()
try:
src_path = os.path.join(build_dir, "main.cpp")
src = textwrap.dedent("""\
#include <iostream>
#include <torch/torch.h>
int main() {
auto x = torch::eye(3);
std::cout << x << std::endl;
}
""")
with open(src_path, "wt") as f:
f.write(src)
exec_path = torch.utils.cpp_extension.load(
"standalone_load_test",
src_path,
build_directory=build_dir,
is_python_module=False,
is_standalone=True,
)
ext = ".exe" if IS_WINDOWS else ""
self.assertEqual(
exec_path,
os.path.join(build_dir, f"standalone_load_test{ext}")
)
for shell in [True, False]:
r = subprocess.run(
[exec_path],
shell=shell,
stdout=subprocess.PIPE,
)
self.assertEqual(r.returncode, 0)
self.assertEqual(
# Windows prints "\r\n" for newlines.
textwrap.dedent(r.stdout.decode("utf-8")).replace("\r\n", "\n"),
textwrap.dedent("""\
1 0 0
0 1 0
0 0 1
[ CPUFloatType{3,3} ]
""")
)
finally:
shutil.rmtree(build_dir)
if __name__ == '__main__':
run_tests()