pytorch/test/custom_backend/test_custom_backend.py
Meghan Lele e2a291b396 [JIT] Add out-of-source-tree to_backend tests (#40842)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40842

**Summary**
This commit adds out-of-source-tree tests for `to_backend`. These tests check
that a Module can be lowered to a backend, exported, loaded (in both
Python and C++) and executed.

**Fixes**
This commit fixes #40067.

Test Plan: Imported from OSS

Differential Revision: D22418731

Pulled By: SplitInfinity

fbshipit-source-id: 621ba4efc1b121fa76c9c7ca377792ac7440d250
2020-07-07 21:00:43 -07:00

55 lines
1.6 KiB
Python

import os
import tempfile
import torch
import unittest
from backend import Model, to_custom_backend, get_custom_backend_library_path
class TestCustomBackend(unittest.TestCase):
def setUp(self):
# Load the library containing the custom backend.
self.library_path = get_custom_backend_library_path()
torch.ops.load_library(self.library_path)
# Create an instance of the test Module and lower it for
# the custom backend.
self.model = to_custom_backend(torch.jit.script(Model()))
def test_execute(self):
"""
Test execution using the custom backend.
"""
a = torch.randn(4)
b = torch.randn(4)
# The custom backend is hardcoded to compute f(a, b) = (a + b, a - b).
expected = (a + b, a - b)
out = self.model(a, b)
self.assertTrue(expected[0].allclose(out[0]))
self.assertTrue(expected[1].allclose(out[1]))
def test_save_load(self):
"""
Test that a lowered module can be executed correctly
after saving and loading.
"""
# Test execution before saving and loading to make sure
# the lowered module works in the first place.
self.test_execute()
# Save and load.
f = tempfile.NamedTemporaryFile(delete=False)
try:
f.close()
torch.jit.save(self.model, f.name)
loaded = torch.jit.load(f.name)
finally:
os.unlink(f.name)
self.model = loaded
# Test execution again.
self.test_execute()
if __name__ == "__main__":
unittest.main()