mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Something flaky is going on with `test_inplace_view_saved_output` on Windows. With my PR #20598 applied, the test fails, even though there is no obvious reason it should be related, so the PR was reverted. Based on commenting out various parts of my change and re-building, I think the problem is with the name -- renaming everything from `T` to `asdf` seems to make the test stop failing. I can't be sure that this is actually the case though, since I could just be seeing patterns in non-deterministic build output... I spoke with colesbury offline and we agreed that it is okay to just disable this test on Windows for now and not block landing the main change. He will look into why it is failing. **Test Plan:** I will wait to make sure the Windows CI suite passes before landing this. Pull Request resolved: https://github.com/pytorch/pytorch/pull/21175 Differential Revision: D15566970 Pulled By: umanwizard fbshipit-source-id: edf223375d41faaab0a3a14dca50841f08030da3
3198 lines
74 KiB
Python
3198 lines
74 KiB
Python
"""Adds docstrings to Tensor functions"""
|
|
|
|
import torch._C
|
|
from torch._C import _add_docstr as add_docstr
|
|
from ._torch_docs import parse_kwargs
|
|
|
|
|
|
def add_docstr_all(method, docstr):
|
|
add_docstr(getattr(torch._C._TensorBase, method), docstr)
|
|
|
|
new_common_args = parse_kwargs("""
|
|
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
|
|
shape of the output tensor.
|
|
dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
|
|
Default: if None, same :class:`torch.dtype` as this tensor.
|
|
device (:class:`torch.device`, optional): the desired device of returned tensor.
|
|
Default: if None, same :class:`torch.device` as this tensor.
|
|
requires_grad (bool, optional): If autograd should record operations on the
|
|
returned tensor. Default: ``False``.
|
|
pin_memory (bool, optional): If set, returned tensor would be allocated in
|
|
the pinned memory. Works only for CPU tensors. Default: ``False``.
|
|
""")
|
|
|
|
add_docstr_all('new_tensor',
|
|
r"""
|
|
new_tensor(data, dtype=None, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a new Tensor with :attr:`data` as the tensor data.
|
|
By default, the returned Tensor has the same :class:`torch.dtype` and
|
|
:class:`torch.device` as this tensor.
|
|
|
|
.. warning::
|
|
|
|
:func:`new_tensor` always copies :attr:`data`. If you have a Tensor
|
|
``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_`
|
|
or :func:`torch.Tensor.detach`.
|
|
If you have a numpy array and want to avoid a copy, use
|
|
:func:`torch.from_numpy`.
|
|
|
|
.. warning::
|
|
|
|
When data is a tensor `x`, :func:`new_tensor()` reads out 'the data' from whatever it is passed,
|
|
and constructs a leaf variable. Therefore ``tensor.new_tensor(x)`` is equivalent to ``x.clone().detach()``
|
|
and ``tensor.new_tensor(x, requires_grad=True)`` is equivalent to ``x.clone().detach().requires_grad_(True)``.
|
|
The equivalents using ``clone()`` and ``detach()`` are recommended.
|
|
|
|
Args:
|
|
data (array_like): The returned Tensor copies :attr:`data`.
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.ones((2,), dtype=torch.int8)
|
|
>>> data = [[0, 1], [2, 3]]
|
|
>>> tensor.new_tensor(data)
|
|
tensor([[ 0, 1],
|
|
[ 2, 3]], dtype=torch.int8)
|
|
|
|
""".format(**new_common_args))
|
|
|
|
add_docstr_all('new_full',
|
|
r"""
|
|
new_full(size, fill_value, dtype=None, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a Tensor of size :attr:`size` filled with :attr:`fill_value`.
|
|
By default, the returned Tensor has the same :class:`torch.dtype` and
|
|
:class:`torch.device` as this tensor.
|
|
|
|
Args:
|
|
fill_value (scalar): the number to fill the output tensor with.
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.ones((2,), dtype=torch.float64)
|
|
>>> tensor.new_full((3, 4), 3.141592)
|
|
tensor([[ 3.1416, 3.1416, 3.1416, 3.1416],
|
|
[ 3.1416, 3.1416, 3.1416, 3.1416],
|
|
[ 3.1416, 3.1416, 3.1416, 3.1416]], dtype=torch.float64)
|
|
|
|
""".format(**new_common_args))
|
|
|
|
add_docstr_all('new_empty',
|
|
r"""
|
|
new_empty(size, dtype=None, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a Tensor of size :attr:`size` filled with uninitialized data.
|
|
By default, the returned Tensor has the same :class:`torch.dtype` and
|
|
:class:`torch.device` as this tensor.
|
|
|
|
Args:
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.ones(())
|
|
>>> tensor.new_empty((2, 3))
|
|
tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30],
|
|
[ 3.0949e-41, 4.4842e-44, 0.0000e+00]])
|
|
|
|
""".format(**new_common_args))
|
|
|
|
add_docstr_all('new_ones',
|
|
r"""
|
|
new_ones(size, dtype=None, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a Tensor of size :attr:`size` filled with ``1``.
|
|
By default, the returned Tensor has the same :class:`torch.dtype` and
|
|
:class:`torch.device` as this tensor.
|
|
|
|
Args:
|
|
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
|
|
shape of the output tensor.
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.tensor((), dtype=torch.int32)
|
|
>>> tensor.new_ones((2, 3))
|
|
tensor([[ 1, 1, 1],
|
|
[ 1, 1, 1]], dtype=torch.int32)
|
|
|
|
""".format(**new_common_args))
|
|
|
|
add_docstr_all('new_zeros',
|
|
r"""
|
|
new_zeros(size, dtype=None, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a Tensor of size :attr:`size` filled with ``0``.
|
|
By default, the returned Tensor has the same :class:`torch.dtype` and
|
|
:class:`torch.device` as this tensor.
|
|
|
|
Args:
|
|
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
|
|
shape of the output tensor.
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.tensor((), dtype=torch.float64)
|
|
>>> tensor.new_zeros((2, 3))
|
|
tensor([[ 0., 0., 0.],
|
|
[ 0., 0., 0.]], dtype=torch.float64)
|
|
|
|
""".format(**new_common_args))
|
|
|
|
add_docstr_all('abs',
|
|
r"""
|
|
abs() -> Tensor
|
|
|
|
See :func:`torch.abs`
|
|
""")
|
|
|
|
add_docstr_all('abs_',
|
|
r"""
|
|
abs_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.abs`
|
|
""")
|
|
|
|
add_docstr_all('acos',
|
|
r"""
|
|
acos() -> Tensor
|
|
|
|
See :func:`torch.acos`
|
|
""")
|
|
|
|
add_docstr_all('acos_',
|
|
r"""
|
|
acos_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.acos`
|
|
""")
|
|
|
|
add_docstr_all('add',
|
|
r"""
|
|
add(value) -> Tensor
|
|
add(value=1, other) -> Tensor
|
|
|
|
See :func:`torch.add`
|
|
""")
|
|
|
|
add_docstr_all('add_',
|
|
r"""
|
|
add_(value) -> Tensor
|
|
add_(value=1, other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.add`
|
|
""")
|
|
|
|
add_docstr_all('addbmm',
|
|
r"""
|
|
addbmm(beta=1, alpha=1, batch1, batch2) -> Tensor
|
|
|
|
See :func:`torch.addbmm`
|
|
""")
|
|
|
|
add_docstr_all('addbmm_',
|
|
r"""
|
|
addbmm_(beta=1, alpha=1, batch1, batch2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addbmm`
|
|
""")
|
|
|
|
add_docstr_all('addcdiv',
|
|
r"""
|
|
addcdiv(value=1, tensor1, tensor2) -> Tensor
|
|
|
|
See :func:`torch.addcdiv`
|
|
""")
|
|
|
|
add_docstr_all('addcdiv_',
|
|
r"""
|
|
addcdiv_(value=1, tensor1, tensor2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addcdiv`
|
|
""")
|
|
|
|
add_docstr_all('addcmul',
|
|
r"""
|
|
addcmul(value=1, tensor1, tensor2) -> Tensor
|
|
|
|
See :func:`torch.addcmul`
|
|
""")
|
|
|
|
add_docstr_all('addcmul_',
|
|
r"""
|
|
addcmul_(value=1, tensor1, tensor2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addcmul`
|
|
""")
|
|
|
|
add_docstr_all('addmm',
|
|
r"""
|
|
addmm(beta=1, alpha=1, mat1, mat2) -> Tensor
|
|
|
|
See :func:`torch.addmm`
|
|
""")
|
|
|
|
add_docstr_all('addmm_',
|
|
r"""
|
|
addmm_(beta=1, alpha=1, mat1, mat2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addmm`
|
|
""")
|
|
|
|
add_docstr_all('addmv',
|
|
r"""
|
|
addmv(beta=1, alpha=1, mat, vec) -> Tensor
|
|
|
|
See :func:`torch.addmv`
|
|
""")
|
|
|
|
add_docstr_all('addmv_',
|
|
r"""
|
|
addmv_(beta=1, alpha=1, mat, vec) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addmv`
|
|
""")
|
|
|
|
add_docstr_all('addr',
|
|
r"""
|
|
addr(beta=1, alpha=1, vec1, vec2) -> Tensor
|
|
|
|
See :func:`torch.addr`
|
|
""")
|
|
|
|
add_docstr_all('addr_',
|
|
r"""
|
|
addr_(beta=1, alpha=1, vec1, vec2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addr`
|
|
""")
|
|
|
|
add_docstr_all('all',
|
|
r"""
|
|
.. function:: all() -> bool
|
|
|
|
Returns True if all elements in the tensor are non-zero, False otherwise.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3).byte() % 2
|
|
>>> a
|
|
tensor([[1, 0, 0]], dtype=torch.uint8)
|
|
>>> a.all()
|
|
tensor(0, dtype=torch.uint8)
|
|
|
|
.. function:: all(dim, keepdim=False, out=None) -> Tensor
|
|
|
|
Returns True if all elements in each row of the tensor in the given
|
|
dimension :attr:`dim` are non-zero, False otherwise.
|
|
|
|
If :attr:`keepdim` is ``True``, the output tensor is of the same size as
|
|
:attr:`input` except in the dimension :attr:`dim` where it is of size 1.
|
|
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting
|
|
in the output tensor having 1 fewer dimension than :attr:`input`.
|
|
|
|
Args:
|
|
dim (int): the dimension to reduce
|
|
keepdim (bool): whether the output tensor has :attr:`dim` retained or not
|
|
out (Tensor, optional): the output tensor
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 2).byte() % 2
|
|
>>> a
|
|
tensor([[0, 0],
|
|
[0, 0],
|
|
[0, 1],
|
|
[1, 1]], dtype=torch.uint8)
|
|
>>> a.all(dim=1)
|
|
tensor([0, 0, 0, 1], dtype=torch.uint8)
|
|
|
|
""")
|
|
|
|
add_docstr_all('allclose',
|
|
r"""
|
|
allclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor
|
|
|
|
See :func:`torch.allclose`
|
|
""")
|
|
|
|
add_docstr_all('any',
|
|
r"""
|
|
.. function:: any() -> bool
|
|
|
|
Returns True if any elements in the tensor are non-zero, False otherwise.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3).byte() % 2
|
|
>>> a
|
|
tensor([[0, 0, 1]], dtype=torch.uint8)
|
|
>>> a.any()
|
|
tensor(1, dtype=torch.uint8)
|
|
|
|
.. function:: any(dim, keepdim=False, out=None) -> Tensor
|
|
|
|
Returns True if any elements in each row of the tensor in the given
|
|
dimension :attr:`dim` are non-zero, False otherwise.
|
|
|
|
If :attr:`keepdim` is ``True``, the output tensor is of the same size as
|
|
:attr:`input` except in the dimension :attr:`dim` where it is of size 1.
|
|
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting
|
|
in the output tensor having 1 fewer dimension than :attr:`input`.
|
|
|
|
Args:
|
|
dim (int): the dimension to reduce
|
|
keepdim (bool): whether the output tensor has :attr:`dim` retained or not
|
|
out (Tensor, optional): the output tensor
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 2).byte() % 2
|
|
>>> a
|
|
tensor([[1, 0],
|
|
[0, 0],
|
|
[0, 1],
|
|
[0, 0]], dtype=torch.uint8)
|
|
>>> a.any(dim=1)
|
|
tensor([1, 0, 1, 0], dtype=torch.uint8)
|
|
|
|
""")
|
|
|
|
add_docstr_all('apply_',
|
|
r"""
|
|
apply_(callable) -> Tensor
|
|
|
|
Applies the function :attr:`callable` to each element in the tensor, replacing
|
|
each element with the value returned by :attr:`callable`.
|
|
|
|
.. note::
|
|
|
|
This function only works with CPU tensors and should not be used in code
|
|
sections that require high performance.
|
|
""")
|
|
|
|
add_docstr_all('asin', r"""
|
|
asin() -> Tensor
|
|
|
|
See :func:`torch.asin`
|
|
""")
|
|
|
|
add_docstr_all('asin_',
|
|
r"""
|
|
asin_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.asin`
|
|
""")
|
|
|
|
add_docstr_all('atan',
|
|
r"""
|
|
atan() -> Tensor
|
|
|
|
See :func:`torch.atan`
|
|
""")
|
|
|
|
add_docstr_all('atan2',
|
|
r"""
|
|
atan2(other) -> Tensor
|
|
|
|
See :func:`torch.atan2`
|
|
""")
|
|
|
|
add_docstr_all('atan2_',
|
|
r"""
|
|
atan2_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.atan2`
|
|
""")
|
|
|
|
add_docstr_all('atan_',
|
|
r"""
|
|
atan_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.atan`
|
|
""")
|
|
|
|
add_docstr_all('baddbmm',
|
|
r"""
|
|
baddbmm(beta=1, alpha=1, batch1, batch2) -> Tensor
|
|
|
|
See :func:`torch.baddbmm`
|
|
""")
|
|
|
|
add_docstr_all('baddbmm_',
|
|
r"""
|
|
baddbmm_(beta=1, alpha=1, batch1, batch2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.baddbmm`
|
|
""")
|
|
|
|
add_docstr_all('bernoulli',
|
|
r"""
|
|
bernoulli(*, generator=None) -> Tensor
|
|
|
|
Returns a result tensor where each :math:`\texttt{result[i]}` is independently
|
|
sampled from :math:`\text{Bernoulli}(\texttt{self[i]})`. :attr:`self` must have
|
|
floating point ``dtype``, and the result will have the same ``dtype``.
|
|
|
|
See :func:`torch.bernoulli`
|
|
""")
|
|
|
|
add_docstr_all('bernoulli_',
|
|
r"""
|
|
.. function:: bernoulli_(p=0.5, *, generator=None) -> Tensor
|
|
|
|
Fills each location of :attr:`self` with an independent sample from
|
|
:math:`\text{Bernoulli}(\texttt{p})`. :attr:`self` can have integral
|
|
``dtype``.
|
|
|
|
.. function:: bernoulli_(p_tensor, *, generator=None) -> Tensor
|
|
|
|
:attr:`p_tensor` should be a tensor containing probabilities to be used for
|
|
drawing the binary random number.
|
|
|
|
The :math:`\text{i}^{th}` element of :attr:`self` tensor will be set to a
|
|
value sampled from :math:`\text{Bernoulli}(\texttt{p\_tensor[i]})`.
|
|
|
|
:attr:`self` can have integral ``dtype``, but :attr:`p_tensor` must have
|
|
floating point ``dtype``.
|
|
|
|
See also :meth:`~Tensor.bernoulli` and :func:`torch.bernoulli`
|
|
""")
|
|
|
|
add_docstr_all('bincount',
|
|
r"""
|
|
bincount(weights=None, minlength=0) -> Tensor
|
|
|
|
See :func:`torch.bincount`
|
|
""")
|
|
|
|
add_docstr_all('bmm',
|
|
r"""
|
|
bmm(batch2) -> Tensor
|
|
|
|
See :func:`torch.bmm`
|
|
""")
|
|
|
|
add_docstr_all('cauchy_',
|
|
r"""
|
|
cauchy_(median=0, sigma=1, *, generator=None) -> Tensor
|
|
|
|
Fills the tensor with numbers drawn from the Cauchy distribution:
|
|
|
|
.. math::
|
|
|
|
f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - \text{median})^2 + \sigma^2}
|
|
""")
|
|
|
|
add_docstr_all('ceil',
|
|
r"""
|
|
ceil() -> Tensor
|
|
|
|
See :func:`torch.ceil`
|
|
""")
|
|
|
|
add_docstr_all('ceil_',
|
|
r"""
|
|
ceil_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.ceil`
|
|
""")
|
|
|
|
add_docstr_all('cholesky',
|
|
r"""
|
|
cholesky(upper=False) -> Tensor
|
|
|
|
See :func:`torch.cholesky`
|
|
""")
|
|
|
|
add_docstr_all('cholesky_solve',
|
|
r"""
|
|
cholesky_solve(input2, upper=False) -> Tensor
|
|
|
|
See :func:`torch.cholesky_solve`
|
|
""")
|
|
|
|
add_docstr_all('cholesky_inverse',
|
|
r"""
|
|
cholesky_inverse(upper=False) -> Tensor
|
|
|
|
See :func:`torch.cholesky_inverse`
|
|
""")
|
|
|
|
add_docstr_all('clamp',
|
|
r"""
|
|
clamp(min, max) -> Tensor
|
|
|
|
See :func:`torch.clamp`
|
|
""")
|
|
|
|
add_docstr_all('clamp_',
|
|
r"""
|
|
clamp_(min, max) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.clamp`
|
|
""")
|
|
|
|
add_docstr_all('clone',
|
|
r"""
|
|
clone() -> Tensor
|
|
|
|
Returns a copy of the :attr:`self` tensor. The copy has the same size and data
|
|
type as :attr:`self`.
|
|
|
|
.. note::
|
|
|
|
Unlike `copy_()`, this function is recorded in the computation graph. Gradients
|
|
propagating to the cloned tensor will propagate to the original tensor.
|
|
""")
|
|
|
|
add_docstr_all('contiguous',
|
|
r"""
|
|
contiguous() -> Tensor
|
|
|
|
Returns a contiguous tensor containing the same data as :attr:`self` tensor. If
|
|
:attr:`self` tensor is contiguous, this function returns the :attr:`self`
|
|
tensor.
|
|
""")
|
|
|
|
add_docstr_all('copy_',
|
|
r"""
|
|
copy_(src, non_blocking=False) -> Tensor
|
|
|
|
Copies the elements from :attr:`src` into :attr:`self` tensor and returns
|
|
:attr:`self`.
|
|
|
|
The :attr:`src` tensor must be :ref:`broadcastable <broadcasting-semantics>`
|
|
with the :attr:`self` tensor. It may be of a different data type or reside on a
|
|
different device.
|
|
|
|
Args:
|
|
src (Tensor): the source tensor to copy from
|
|
non_blocking (bool): if ``True`` and this copy is between CPU and GPU,
|
|
the copy may occur asynchronously with respect to the host. For other
|
|
cases, this argument has no effect.
|
|
""")
|
|
|
|
add_docstr_all('cos',
|
|
r"""
|
|
cos() -> Tensor
|
|
|
|
See :func:`torch.cos`
|
|
""")
|
|
|
|
add_docstr_all('cos_',
|
|
r"""
|
|
cos_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.cos`
|
|
""")
|
|
|
|
add_docstr_all('cosh',
|
|
r"""
|
|
cosh() -> Tensor
|
|
|
|
See :func:`torch.cosh`
|
|
""")
|
|
|
|
add_docstr_all('cosh_',
|
|
r"""
|
|
cosh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.cosh`
|
|
""")
|
|
|
|
add_docstr_all('cpu',
|
|
r"""
|
|
cpu() -> Tensor
|
|
|
|
Returns a copy of this object in CPU memory.
|
|
|
|
If this object is already in CPU memory and on the correct device,
|
|
then no copy is performed and the original object is returned.
|
|
""")
|
|
|
|
add_docstr_all('cross',
|
|
r"""
|
|
cross(other, dim=-1) -> Tensor
|
|
|
|
See :func:`torch.cross`
|
|
""")
|
|
|
|
add_docstr_all('cuda',
|
|
r"""
|
|
cuda(device=None, non_blocking=False) -> Tensor
|
|
|
|
Returns a copy of this object in CUDA memory.
|
|
|
|
If this object is already in CUDA memory and on the correct device,
|
|
then no copy is performed and the original object is returned.
|
|
|
|
Args:
|
|
device (:class:`torch.device`): The destination GPU device.
|
|
Defaults to the current CUDA device.
|
|
non_blocking (bool): If ``True`` and the source is in pinned memory,
|
|
the copy will be asynchronous with respect to the host.
|
|
Otherwise, the argument has no effect. Default: ``False``.
|
|
""")
|
|
|
|
add_docstr_all('cumprod',
|
|
r"""
|
|
cumprod(dim, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.cumprod`
|
|
""")
|
|
|
|
add_docstr_all('cumsum',
|
|
r"""
|
|
cumsum(dim, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.cumsum`
|
|
""")
|
|
|
|
add_docstr_all('data_ptr',
|
|
r"""
|
|
data_ptr() -> int
|
|
|
|
Returns the address of the first element of :attr:`self` tensor.
|
|
""")
|
|
|
|
add_docstr_all('dequantize',
|
|
r"""
|
|
dequantize() -> Tensor
|
|
|
|
Given a quantized Tensor, dequantize it and return the dequantized float Tensor.
|
|
""")
|
|
|
|
add_docstr_all('dense_dim',
|
|
r"""
|
|
dense_dim() -> int
|
|
|
|
If :attr:`self` is a sparse COO tensor (i.e., with ``torch.sparse_coo`` layout),
|
|
this returns a the number of dense dimensions. Otherwise, this throws an
|
|
error.
|
|
|
|
See also :meth:`Tensor.sparse_dim`.
|
|
""")
|
|
|
|
add_docstr_all('diag',
|
|
r"""
|
|
diag(diagonal=0) -> Tensor
|
|
|
|
See :func:`torch.diag`
|
|
""")
|
|
|
|
add_docstr_all('diag_embed',
|
|
r"""
|
|
diag_embed(offset=0, dim1=-2, dim2=-1) -> Tensor
|
|
|
|
See :func:`torch.diag_embed`
|
|
""")
|
|
|
|
add_docstr_all('diagflat',
|
|
r"""
|
|
diagflat(diagonal=0) -> Tensor
|
|
|
|
See :func:`torch.diagflat`
|
|
""")
|
|
|
|
add_docstr_all('diagonal',
|
|
r"""
|
|
diagonal(offset=0, dim1=0, dim2=1) -> Tensor
|
|
|
|
See :func:`torch.diagonal`
|
|
""")
|
|
|
|
add_docstr_all('digamma',
|
|
r"""
|
|
digamma() -> Tensor
|
|
|
|
See :func:`torch.digamma`
|
|
""")
|
|
|
|
add_docstr_all('digamma_',
|
|
r"""
|
|
digamma_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.digamma`
|
|
""")
|
|
|
|
add_docstr_all('dim',
|
|
r"""
|
|
dim() -> int
|
|
|
|
Returns the number of dimensions of :attr:`self` tensor.
|
|
""")
|
|
|
|
add_docstr_all('dist',
|
|
r"""
|
|
dist(other, p=2) -> Tensor
|
|
|
|
See :func:`torch.dist`
|
|
""")
|
|
|
|
add_docstr_all('div',
|
|
r"""
|
|
div(value) -> Tensor
|
|
|
|
See :func:`torch.div`
|
|
""")
|
|
|
|
add_docstr_all('div_',
|
|
r"""
|
|
div_(value) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.div`
|
|
""")
|
|
|
|
add_docstr_all('dot',
|
|
r"""
|
|
dot(tensor2) -> Tensor
|
|
|
|
See :func:`torch.dot`
|
|
""")
|
|
|
|
add_docstr_all('eig',
|
|
r"""
|
|
eig(eigenvectors=False) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.eig`
|
|
""")
|
|
|
|
add_docstr_all('element_size',
|
|
r"""
|
|
element_size() -> int
|
|
|
|
Returns the size in bytes of an individual element.
|
|
|
|
Example::
|
|
|
|
>>> torch.tensor([]).element_size()
|
|
4
|
|
>>> torch.tensor([], dtype=torch.uint8).element_size()
|
|
1
|
|
|
|
""")
|
|
|
|
add_docstr_all('eq',
|
|
r"""
|
|
eq(other) -> Tensor
|
|
|
|
See :func:`torch.eq`
|
|
""")
|
|
|
|
add_docstr_all('eq_',
|
|
r"""
|
|
eq_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.eq`
|
|
""")
|
|
|
|
add_docstr_all('equal',
|
|
r"""
|
|
equal(other) -> bool
|
|
|
|
See :func:`torch.equal`
|
|
""")
|
|
|
|
add_docstr_all('erf',
|
|
r"""
|
|
erf() -> Tensor
|
|
|
|
See :func:`torch.erf`
|
|
""")
|
|
|
|
add_docstr_all('erf_',
|
|
r"""
|
|
erf_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.erf`
|
|
""")
|
|
|
|
add_docstr_all('erfc',
|
|
r"""
|
|
erfc() -> Tensor
|
|
|
|
See :func:`torch.erfc`
|
|
""")
|
|
|
|
add_docstr_all('erfc_',
|
|
r"""
|
|
erfc_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.erfc`
|
|
""")
|
|
|
|
add_docstr_all('erfinv',
|
|
r"""
|
|
erfinv() -> Tensor
|
|
|
|
See :func:`torch.erfinv`
|
|
""")
|
|
|
|
add_docstr_all('erfinv_',
|
|
r"""
|
|
erfinv_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.erfinv`
|
|
""")
|
|
|
|
add_docstr_all('exp',
|
|
r"""
|
|
exp() -> Tensor
|
|
|
|
See :func:`torch.exp`
|
|
""")
|
|
|
|
add_docstr_all('exp_',
|
|
r"""
|
|
exp_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.exp`
|
|
""")
|
|
|
|
add_docstr_all('expm1',
|
|
r"""
|
|
expm1() -> Tensor
|
|
|
|
See :func:`torch.expm1`
|
|
""")
|
|
|
|
add_docstr_all('expm1_',
|
|
r"""
|
|
expm1_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.expm1`
|
|
""")
|
|
|
|
add_docstr_all('exponential_',
|
|
r"""
|
|
exponential_(lambd=1, *, generator=None) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with elements drawn from the exponential distribution:
|
|
|
|
.. math::
|
|
|
|
f(x) = \lambda e^{-\lambda x}
|
|
""")
|
|
|
|
add_docstr_all('fill_',
|
|
r"""
|
|
fill_(value) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with the specified value.
|
|
""")
|
|
|
|
add_docstr_all('floor',
|
|
r"""
|
|
floor() -> Tensor
|
|
|
|
See :func:`torch.floor`
|
|
""")
|
|
|
|
add_docstr_all('flip',
|
|
r"""
|
|
flip(dims) -> Tensor
|
|
|
|
See :func:`torch.flip`
|
|
""")
|
|
|
|
add_docstr_all('roll',
|
|
r"""
|
|
roll(shifts, dims) -> Tensor
|
|
|
|
See :func:`torch.roll`
|
|
""")
|
|
|
|
add_docstr_all('floor_',
|
|
r"""
|
|
floor_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.floor`
|
|
""")
|
|
|
|
add_docstr_all('fmod',
|
|
r"""
|
|
fmod(divisor) -> Tensor
|
|
|
|
See :func:`torch.fmod`
|
|
""")
|
|
|
|
add_docstr_all('fmod_',
|
|
r"""
|
|
fmod_(divisor) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.fmod`
|
|
""")
|
|
|
|
add_docstr_all('frac',
|
|
r"""
|
|
frac() -> Tensor
|
|
|
|
See :func:`torch.frac`
|
|
""")
|
|
|
|
add_docstr_all('frac_',
|
|
r"""
|
|
frac_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.frac`
|
|
""")
|
|
|
|
add_docstr_all('flatten',
|
|
r"""
|
|
flatten(input, start_dim=0, end_dim=-1) -> Tensor
|
|
|
|
see :func:`torch.flatten`
|
|
""")
|
|
|
|
add_docstr_all('gather',
|
|
r"""
|
|
gather(dim, index) -> Tensor
|
|
|
|
See :func:`torch.gather`
|
|
""")
|
|
|
|
add_docstr_all('ge',
|
|
r"""
|
|
ge(other) -> Tensor
|
|
|
|
See :func:`torch.ge`
|
|
""")
|
|
|
|
add_docstr_all('ge_',
|
|
r"""
|
|
ge_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.ge`
|
|
""")
|
|
|
|
add_docstr_all('gels',
|
|
r"""
|
|
gels(A) -> Tensor
|
|
|
|
See :func:`torch.gels`
|
|
""")
|
|
|
|
add_docstr_all('geometric_',
|
|
r"""
|
|
geometric_(p, *, generator=None) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with elements drawn from the geometric distribution:
|
|
|
|
.. math::
|
|
|
|
f(X=k) = p^{k - 1} (1 - p)
|
|
|
|
""")
|
|
|
|
add_docstr_all('geqrf',
|
|
r"""
|
|
geqrf() -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.geqrf`
|
|
""")
|
|
|
|
add_docstr_all('ger',
|
|
r"""
|
|
ger(vec2) -> Tensor
|
|
|
|
See :func:`torch.ger`
|
|
""")
|
|
|
|
add_docstr_all('indices',
|
|
r"""
|
|
indices() -> Tensor
|
|
|
|
If :attr:`self` is a sparse COO tensor (i.e., with ``torch.sparse_coo`` layout),
|
|
this returns a view of the contained indices tensor. Otherwise, this throws an
|
|
error.
|
|
|
|
See also :meth:`Tensor.values`.
|
|
|
|
.. note::
|
|
This method can only be called on a coalesced sparse tensor. See
|
|
:meth:`Tensor.coalesce` for details.
|
|
""")
|
|
|
|
add_docstr_all('get_device',
|
|
r"""
|
|
get_device() -> Device ordinal (Integer)
|
|
|
|
For CUDA tensors, this function returns the device ordinal of the GPU on which the tensor resides.
|
|
For CPU tensors, an error is thrown.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(3, 4, 5, device='cuda:0')
|
|
>>> x.get_device()
|
|
0
|
|
>>> x.cpu().get_device() # RuntimeError: get_device is not implemented for type torch.FloatTensor
|
|
""")
|
|
|
|
add_docstr_all('values',
|
|
r"""
|
|
values() -> Tensor
|
|
|
|
If :attr:`self` is a sparse COO tensor (i.e., with ``torch.sparse_coo`` layout),
|
|
this returns a view of the contained values tensor. Otherwise, this throws an
|
|
error.
|
|
|
|
See also :meth:`Tensor.indices`.
|
|
|
|
.. note::
|
|
This method can only be called on a coalesced sparse tensor. See
|
|
:meth:`Tensor.coalesce` for details.
|
|
""")
|
|
|
|
add_docstr_all('gt',
|
|
r"""
|
|
gt(other) -> Tensor
|
|
|
|
See :func:`torch.gt`
|
|
""")
|
|
|
|
add_docstr_all('gt_',
|
|
r"""
|
|
gt_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.gt`
|
|
""")
|
|
|
|
add_docstr_all('hardshrink',
|
|
r"""
|
|
hardshrink(lambd=0.5) -> Tensor
|
|
|
|
See :func:`torch.nn.functional.hardshrink`
|
|
""")
|
|
|
|
add_docstr_all('histc',
|
|
r"""
|
|
histc(bins=100, min=0, max=0) -> Tensor
|
|
|
|
See :func:`torch.histc`
|
|
""")
|
|
|
|
add_docstr_all('index_add_',
|
|
r"""
|
|
index_add_(dim, index, tensor) -> Tensor
|
|
|
|
Accumulate the elements of :attr:`tensor` into the :attr:`self` tensor by adding
|
|
to the indices in the order given in :attr:`index`. For example, if ``dim == 0``
|
|
and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is added to the
|
|
``j``\ th row of :attr:`self`.
|
|
|
|
The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the
|
|
length of :attr:`index` (which must be a vector), and all other dimensions must
|
|
match :attr:`self`, or an error will be raised.
|
|
|
|
.. include:: cuda_deterministic.rst
|
|
|
|
Args:
|
|
dim (int): dimension along which to index
|
|
index (LongTensor): indices of :attr:`tensor` to select from
|
|
tensor (Tensor): the tensor containing values to add
|
|
|
|
Example::
|
|
|
|
>>> x = torch.ones(5, 3)
|
|
>>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float)
|
|
>>> index = torch.tensor([0, 4, 2])
|
|
>>> x.index_add_(0, index, t)
|
|
tensor([[ 2., 3., 4.],
|
|
[ 1., 1., 1.],
|
|
[ 8., 9., 10.],
|
|
[ 1., 1., 1.],
|
|
[ 5., 6., 7.]])
|
|
""")
|
|
|
|
add_docstr_all('index_copy_',
|
|
r"""
|
|
index_copy_(dim, index, tensor) -> Tensor
|
|
|
|
Copies the elements of :attr:`tensor` into the :attr:`self` tensor by selecting
|
|
the indices in the order given in :attr:`index`. For example, if ``dim == 0``
|
|
and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is copied to the
|
|
``j``\ th row of :attr:`self`.
|
|
|
|
The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the
|
|
length of :attr:`index` (which must be a vector), and all other dimensions must
|
|
match :attr:`self`, or an error will be raised.
|
|
|
|
Args:
|
|
dim (int): dimension along which to index
|
|
index (LongTensor): indices of :attr:`tensor` to select from
|
|
tensor (Tensor): the tensor containing values to copy
|
|
|
|
Example::
|
|
|
|
>>> x = torch.zeros(5, 3)
|
|
>>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float)
|
|
>>> index = torch.tensor([0, 4, 2])
|
|
>>> x.index_copy_(0, index, t)
|
|
tensor([[ 1., 2., 3.],
|
|
[ 0., 0., 0.],
|
|
[ 7., 8., 9.],
|
|
[ 0., 0., 0.],
|
|
[ 4., 5., 6.]])
|
|
""")
|
|
|
|
add_docstr_all('index_fill_',
|
|
r"""
|
|
index_fill_(dim, index, val) -> Tensor
|
|
|
|
Fills the elements of the :attr:`self` tensor with value :attr:`val` by
|
|
selecting the indices in the order given in :attr:`index`.
|
|
|
|
Args:
|
|
dim (int): dimension along which to index
|
|
index (LongTensor): indices of :attr:`self` tensor to fill in
|
|
val (float): the value to fill with
|
|
|
|
Example::
|
|
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float)
|
|
>>> index = torch.tensor([0, 2])
|
|
>>> x.index_fill_(1, index, -1)
|
|
tensor([[-1., 2., -1.],
|
|
[-1., 5., -1.],
|
|
[-1., 8., -1.]])
|
|
""")
|
|
|
|
add_docstr_all('index_put_',
|
|
r"""
|
|
index_put_(indices, value, accumulate=False) -> Tensor
|
|
|
|
Puts values from the tensor :attr:`value` into the tensor :attr:`self` using
|
|
the indices specified in :attr:`indices` (which is a tuple of Tensors). The
|
|
expression ``tensor.index_put_(indices, value)`` is equivalent to
|
|
``tensor[indices] = value``. Returns :attr:`self`.
|
|
|
|
If :attr:`accumulate` is ``True``, the elements in :attr:`tensor` are added to
|
|
:attr:`self`. If accumulate is ``False``, the behavior is undefined if indices
|
|
contain duplicate elements.
|
|
|
|
Args:
|
|
indices (tuple of LongTensor): tensors used to index into `self`.
|
|
value (Tensor): tensor of same dtype as `self`.
|
|
accumulate (bool): whether to accumulate into self
|
|
""")
|
|
|
|
add_docstr_all('index_put',
|
|
r"""
|
|
index_put(indices, value, accumulate=False) -> Tensor
|
|
|
|
Out-place version of :meth:`~Tensor.index_put_`
|
|
""")
|
|
|
|
add_docstr_all('index_select',
|
|
r"""
|
|
index_select(dim, index) -> Tensor
|
|
|
|
See :func:`torch.index_select`
|
|
""")
|
|
|
|
add_docstr_all('sparse_mask',
|
|
r"""
|
|
sparse_mask(input, mask) -> Tensor
|
|
|
|
Returns a new SparseTensor with values from Tensor :attr:`input` filtered
|
|
by indices of :attr:`mask` and values are ignored. :attr:`input` and :attr:`mask`
|
|
must have the same shape.
|
|
|
|
Args:
|
|
input (Tensor): an input Tensor
|
|
mask (SparseTensor): a SparseTensor which we filter :attr:`input` based on its indices
|
|
|
|
Example::
|
|
|
|
>>> nnz = 5
|
|
>>> dims = [5, 5, 2, 2]
|
|
>>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)),
|
|
torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz)
|
|
>>> V = torch.randn(nnz, dims[2], dims[3])
|
|
>>> size = torch.Size(dims)
|
|
>>> S = torch.sparse_coo_tensor(I, V, size).coalesce()
|
|
>>> D = torch.randn(dims)
|
|
>>> D.sparse_mask(S)
|
|
tensor(indices=tensor([[0, 0, 0, 2],
|
|
[0, 1, 4, 3]]),
|
|
values=tensor([[[ 1.6550, 0.2397],
|
|
[-0.1611, -0.0779]],
|
|
|
|
[[ 0.2326, -1.0558],
|
|
[ 1.4711, 1.9678]],
|
|
|
|
[[-0.5138, -0.0411],
|
|
[ 1.9417, 0.5158]],
|
|
|
|
[[ 0.0793, 0.0036],
|
|
[-0.2569, -0.1055]]]),
|
|
size=(5, 5, 2, 2), nnz=4, layout=torch.sparse_coo)
|
|
""")
|
|
|
|
add_docstr_all('inverse',
|
|
r"""
|
|
inverse() -> Tensor
|
|
|
|
See :func:`torch.inverse`
|
|
""")
|
|
|
|
add_docstr_all('is_contiguous',
|
|
r"""
|
|
is_contiguous() -> bool
|
|
|
|
Returns True if :attr:`self` tensor is contiguous in memory in C order.
|
|
""")
|
|
|
|
add_docstr_all('is_floating_point',
|
|
r"""
|
|
is_floating_point() -> bool
|
|
|
|
Returns True if the data type of :attr:`self` is a floating point data type.
|
|
""")
|
|
|
|
add_docstr_all('is_signed',
|
|
r"""
|
|
is_signed() -> bool
|
|
|
|
Returns True if the data type of :attr:`self` is a signed data type.
|
|
""")
|
|
|
|
add_docstr_all('is_set_to',
|
|
r"""
|
|
is_set_to(tensor) -> bool
|
|
|
|
Returns True if this object refers to the same ``THTensor`` object from the
|
|
Torch C API as the given tensor.
|
|
""")
|
|
|
|
add_docstr_all('item', r"""
|
|
item() -> number
|
|
|
|
Returns the value of this tensor as a standard Python number. This only works
|
|
for tensors with one element. For other cases, see :meth:`~Tensor.tolist`.
|
|
|
|
This operation is not differentiable.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1.0])
|
|
>>> x.item()
|
|
1.0
|
|
|
|
""")
|
|
|
|
add_docstr_all('kthvalue',
|
|
r"""
|
|
kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.kthvalue`
|
|
""")
|
|
|
|
add_docstr_all('le',
|
|
r"""
|
|
le(other) -> Tensor
|
|
|
|
See :func:`torch.le`
|
|
""")
|
|
|
|
add_docstr_all('le_',
|
|
r"""
|
|
le_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.le`
|
|
""")
|
|
|
|
add_docstr_all('lerp',
|
|
r"""
|
|
lerp(end, weight) -> Tensor
|
|
|
|
See :func:`torch.lerp`
|
|
""")
|
|
|
|
add_docstr_all('lerp_',
|
|
r"""
|
|
lerp_(end, weight) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.lerp`
|
|
""")
|
|
|
|
add_docstr_all('log',
|
|
r"""
|
|
log() -> Tensor
|
|
|
|
See :func:`torch.log`
|
|
""")
|
|
|
|
add_docstr_all('log_', r"""
|
|
log_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.log`
|
|
""")
|
|
|
|
add_docstr_all('log10',
|
|
r"""
|
|
log10() -> Tensor
|
|
|
|
See :func:`torch.log10`
|
|
""")
|
|
|
|
add_docstr_all('log10_',
|
|
r"""
|
|
log10_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.log10`
|
|
""")
|
|
|
|
add_docstr_all('log1p',
|
|
r"""
|
|
log1p() -> Tensor
|
|
|
|
See :func:`torch.log1p`
|
|
""")
|
|
|
|
add_docstr_all('log1p_',
|
|
r"""
|
|
log1p_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.log1p`
|
|
""")
|
|
|
|
add_docstr_all('log2',
|
|
r"""
|
|
log2() -> Tensor
|
|
|
|
See :func:`torch.log2`
|
|
""")
|
|
|
|
add_docstr_all('log2_',
|
|
r"""
|
|
log2_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.log2`
|
|
""")
|
|
|
|
add_docstr_all('log_normal_', r"""
|
|
log_normal_(mean=1, std=2, *, generator=None)
|
|
|
|
Fills :attr:`self` tensor with numbers samples from the log-normal distribution
|
|
parameterized by the given mean :math:`\mu` and standard deviation
|
|
:math:`\sigma`. Note that :attr:`mean` and :attr:`std` are the mean and
|
|
standard deviation of the underlying normal distribution, and not of the
|
|
returned distribution:
|
|
|
|
.. math::
|
|
|
|
f(x) = \dfrac{1}{x \sigma \sqrt{2\pi}}\ e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}
|
|
""")
|
|
|
|
add_docstr_all('logsumexp',
|
|
r"""
|
|
logsumexp(dim, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.logsumexp`
|
|
""")
|
|
|
|
add_docstr_all('lt',
|
|
r"""
|
|
lt(other) -> Tensor
|
|
|
|
See :func:`torch.lt`
|
|
""")
|
|
|
|
add_docstr_all('lt_',
|
|
r"""
|
|
lt_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.lt`
|
|
""")
|
|
|
|
add_docstr_all('lu_solve',
|
|
r"""
|
|
lu_solve(LU_data, LU_pivots) -> Tensor
|
|
|
|
See :func:`torch.lu_solve`
|
|
""")
|
|
|
|
add_docstr_all('map_',
|
|
r"""
|
|
map_(tensor, callable)
|
|
|
|
Applies :attr:`callable` for each element in :attr:`self` tensor and the given
|
|
:attr:`tensor` and stores the results in :attr:`self` tensor. :attr:`self` tensor and
|
|
the given :attr:`tensor` must be :ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
The :attr:`callable` should have the signature::
|
|
|
|
def callable(a, b) -> number
|
|
""")
|
|
|
|
add_docstr_all('masked_scatter_',
|
|
r"""
|
|
masked_scatter_(mask, source)
|
|
|
|
Copies elements from :attr:`source` into :attr:`self` tensor at positions where
|
|
the :attr:`mask` is one.
|
|
The shape of :attr:`mask` must be :ref:`broadcastable <broadcasting-semantics>`
|
|
with the shape of the underlying tensor. The :attr:`source` should have at least
|
|
as many elements as the number of ones in :attr:`mask`
|
|
|
|
Args:
|
|
mask (ByteTensor): the binary mask
|
|
source (Tensor): the tensor to copy from
|
|
|
|
.. note::
|
|
|
|
The :attr:`mask` operates on the :attr:`self` tensor, not on the given
|
|
:attr:`source` tensor.
|
|
""")
|
|
|
|
add_docstr_all('masked_fill_',
|
|
r"""
|
|
masked_fill_(mask, value)
|
|
|
|
Fills elements of :attr:`self` tensor with :attr:`value` where :attr:`mask` is
|
|
one. The shape of :attr:`mask` must be
|
|
:ref:`broadcastable <broadcasting-semantics>` with the shape of the underlying
|
|
tensor.
|
|
|
|
Args:
|
|
mask (ByteTensor): the binary mask
|
|
value (float): the value to fill in with
|
|
""")
|
|
|
|
add_docstr_all('masked_select',
|
|
r"""
|
|
masked_select(mask) -> Tensor
|
|
|
|
See :func:`torch.masked_select`
|
|
""")
|
|
|
|
add_docstr_all('matrix_power',
|
|
r"""
|
|
matrix_power(n) -> Tensor
|
|
|
|
See :func:`torch.matrix_power`
|
|
""")
|
|
|
|
add_docstr_all('max',
|
|
r"""
|
|
max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor)
|
|
|
|
See :func:`torch.max`
|
|
""")
|
|
|
|
add_docstr_all('argmax',
|
|
r"""
|
|
argmax(dim=None, keepdim=False) -> LongTensor
|
|
|
|
See :func:`torch.argmax`
|
|
""")
|
|
|
|
add_docstr_all('mean',
|
|
r"""
|
|
mean(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor)
|
|
|
|
See :func:`torch.mean`
|
|
""")
|
|
|
|
add_docstr_all('median',
|
|
r"""
|
|
median(dim=None, keepdim=False) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.median`
|
|
""")
|
|
|
|
add_docstr_all('min',
|
|
r"""
|
|
min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor)
|
|
|
|
See :func:`torch.min`
|
|
""")
|
|
|
|
add_docstr_all('argmin',
|
|
r"""
|
|
argmin(dim=None, keepdim=False) -> LongTensor
|
|
|
|
See :func:`torch.argmin`
|
|
""")
|
|
|
|
add_docstr_all('mm',
|
|
r"""
|
|
mm(mat2) -> Tensor
|
|
|
|
See :func:`torch.mm`
|
|
""")
|
|
|
|
add_docstr_all('mode',
|
|
r"""
|
|
mode(dim=None, keepdim=False) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.mode`
|
|
""")
|
|
|
|
add_docstr_all('mul',
|
|
r"""
|
|
mul(value) -> Tensor
|
|
|
|
See :func:`torch.mul`
|
|
""")
|
|
|
|
add_docstr_all('mul_',
|
|
r"""
|
|
mul_(value)
|
|
|
|
In-place version of :meth:`~Tensor.mul`
|
|
""")
|
|
|
|
add_docstr_all('multinomial',
|
|
r"""
|
|
multinomial(num_samples, replacement=False, *, generator=None) -> Tensor
|
|
|
|
See :func:`torch.multinomial`
|
|
""")
|
|
|
|
add_docstr_all('mv',
|
|
r"""
|
|
mv(vec) -> Tensor
|
|
|
|
See :func:`torch.mv`
|
|
""")
|
|
|
|
add_docstr_all('mvlgamma',
|
|
r"""
|
|
mvlgamma(p) -> Tensor
|
|
|
|
See :func:`torch.mvlgamma`
|
|
""")
|
|
|
|
add_docstr_all('mvlgamma_',
|
|
r"""
|
|
mvlgamma_(p) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.mvlgamma`
|
|
""")
|
|
|
|
add_docstr_all('narrow',
|
|
r"""
|
|
narrow(dimension, start, length) -> Tensor
|
|
|
|
See :func:`torch.narrow`
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
>>> x.narrow(0, 0, 2)
|
|
tensor([[ 1, 2, 3],
|
|
[ 4, 5, 6]])
|
|
>>> x.narrow(1, 1, 2)
|
|
tensor([[ 2, 3],
|
|
[ 5, 6],
|
|
[ 8, 9]])
|
|
""")
|
|
|
|
add_docstr_all('narrow_copy',
|
|
r"""
|
|
narrow_copy(dimension, start, length) -> Tensor
|
|
|
|
Same as :meth:`Tensor.narrow` except returning a copy rather
|
|
than shared storage. This is primarily for sparse tensors, which
|
|
do not have a shared-storage narrow method. Calling ```narrow_copy``
|
|
with ```dimemsion > self.sparse_dim()``` will return a copy with the
|
|
relevant dense dimension narrowed, and ```self.shape``` updated accordingly.
|
|
""")
|
|
|
|
add_docstr_all('ndimension',
|
|
r"""
|
|
ndimension() -> int
|
|
|
|
Alias for :meth:`~Tensor.dim()`
|
|
""")
|
|
|
|
add_docstr_all('ne',
|
|
r"""
|
|
ne(other) -> Tensor
|
|
|
|
See :func:`torch.ne`
|
|
""")
|
|
|
|
add_docstr_all('ne_',
|
|
r"""
|
|
ne_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.ne`
|
|
""")
|
|
|
|
add_docstr_all('neg',
|
|
r"""
|
|
neg() -> Tensor
|
|
|
|
See :func:`torch.neg`
|
|
""")
|
|
|
|
add_docstr_all('neg_',
|
|
r"""
|
|
neg_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.neg`
|
|
""")
|
|
|
|
add_docstr_all('nelement',
|
|
r"""
|
|
nelement() -> int
|
|
|
|
Alias for :meth:`~Tensor.numel`
|
|
""")
|
|
|
|
add_docstr_all('nonzero',
|
|
r"""
|
|
nonzero() -> LongTensor
|
|
|
|
See :func:`torch.nonzero`
|
|
""")
|
|
|
|
add_docstr_all('norm',
|
|
r"""
|
|
norm(p=2, dim=None, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.norm`
|
|
""")
|
|
|
|
add_docstr_all('normal_',
|
|
r"""
|
|
normal_(mean=0, std=1, *, generator=None) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with elements samples from the normal distribution
|
|
parameterized by :attr:`mean` and :attr:`std`.
|
|
""")
|
|
|
|
add_docstr_all('numel',
|
|
r"""
|
|
numel() -> int
|
|
|
|
See :func:`torch.numel`
|
|
""")
|
|
|
|
add_docstr_all('numpy',
|
|
r"""
|
|
numpy() -> numpy.ndarray
|
|
|
|
Returns :attr:`self` tensor as a NumPy :class:`ndarray`. This tensor and the
|
|
returned :class:`ndarray` share the same underlying storage. Changes to
|
|
:attr:`self` tensor will be reflected in the :class:`ndarray` and vice versa.
|
|
""")
|
|
|
|
add_docstr_all('orgqr',
|
|
r"""
|
|
orgqr(input2) -> Tensor
|
|
|
|
See :func:`torch.orgqr`
|
|
""")
|
|
|
|
add_docstr_all('ormqr',
|
|
r"""
|
|
ormqr(input2, input3, left=True, transpose=False) -> Tensor
|
|
|
|
See :func:`torch.ormqr`
|
|
""")
|
|
|
|
|
|
add_docstr_all('permute',
|
|
r"""
|
|
permute(*dims) -> Tensor
|
|
|
|
Permute the dimensions of this tensor.
|
|
|
|
Args:
|
|
*dims (int...): The desired ordering of dimensions
|
|
|
|
Example:
|
|
>>> x = torch.randn(2, 3, 5)
|
|
>>> x.size()
|
|
torch.Size([2, 3, 5])
|
|
>>> x.permute(2, 0, 1).size()
|
|
torch.Size([5, 2, 3])
|
|
""")
|
|
|
|
add_docstr_all('pow',
|
|
r"""
|
|
pow(exponent) -> Tensor
|
|
|
|
See :func:`torch.pow`
|
|
""")
|
|
|
|
add_docstr_all('pow_',
|
|
r"""
|
|
pow_(exponent) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.pow`
|
|
""")
|
|
|
|
add_docstr_all('prod',
|
|
r"""
|
|
prod(dim=None, keepdim=False, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.prod`
|
|
""")
|
|
|
|
add_docstr_all('put_',
|
|
r"""
|
|
put_(indices, tensor, accumulate=False) -> Tensor
|
|
|
|
Copies the elements from :attr:`tensor` into the positions specified by
|
|
indices. For the purpose of indexing, the :attr:`self` tensor is treated as if
|
|
it were a 1-D tensor.
|
|
|
|
If :attr:`accumulate` is ``True``, the elements in :attr:`tensor` are added to
|
|
:attr:`self`. If accumulate is ``False``, the behavior is undefined if indices
|
|
contain duplicate elements.
|
|
|
|
Args:
|
|
indices (LongTensor): the indices into self
|
|
tensor (Tensor): the tensor containing values to copy from
|
|
accumulate (bool): whether to accumulate into self
|
|
|
|
Example::
|
|
|
|
>>> src = torch.tensor([[4, 3, 5],
|
|
[6, 7, 8]])
|
|
>>> src.put_(torch.tensor([1, 3]), torch.tensor([9, 10]))
|
|
tensor([[ 4, 9, 5],
|
|
[ 10, 7, 8]])
|
|
""")
|
|
|
|
add_docstr_all('qr',
|
|
r"""
|
|
qr(some=True) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.qr`
|
|
""")
|
|
|
|
add_docstr_all('q_scale',
|
|
r"""
|
|
q_scale() -> float
|
|
|
|
Given a Tensor quantized by linear(affine) quantization,
|
|
returns the scale of the underlying quantizer().
|
|
""")
|
|
|
|
add_docstr_all('q_zero_point',
|
|
r"""
|
|
q_zero_point() -> int
|
|
|
|
Given a Tensor quantized by linear(affine) quantization,
|
|
returns the zero_point of the underlying quantizer().
|
|
""")
|
|
|
|
add_docstr_all('random_',
|
|
r"""
|
|
random_(from=0, to=None, *, generator=None) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with numbers sampled from the discrete uniform
|
|
distribution over ``[from, to - 1]``. If not specified, the values are usually
|
|
only bounded by :attr:`self` tensor's data type. However, for floating point
|
|
types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every
|
|
value is representable. For example, `torch.tensor(1, dtype=torch.double).random_()`
|
|
will be uniform in ``[0, 2^53]``.
|
|
""")
|
|
|
|
add_docstr_all('reciprocal',
|
|
r"""
|
|
reciprocal() -> Tensor
|
|
|
|
See :func:`torch.reciprocal`
|
|
""")
|
|
|
|
add_docstr_all('reciprocal_',
|
|
r"""
|
|
reciprocal_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.reciprocal`
|
|
""")
|
|
|
|
add_docstr_all('remainder',
|
|
r"""
|
|
remainder(divisor) -> Tensor
|
|
|
|
See :func:`torch.remainder`
|
|
""")
|
|
|
|
add_docstr_all('remainder_',
|
|
r"""
|
|
remainder_(divisor) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.remainder`
|
|
""")
|
|
|
|
add_docstr_all('renorm',
|
|
r"""
|
|
renorm(p, dim, maxnorm) -> Tensor
|
|
|
|
See :func:`torch.renorm`
|
|
""")
|
|
|
|
add_docstr_all('renorm_',
|
|
r"""
|
|
renorm_(p, dim, maxnorm) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.renorm`
|
|
""")
|
|
|
|
add_docstr_all('repeat',
|
|
r"""
|
|
repeat(*sizes) -> Tensor
|
|
|
|
Repeats this tensor along the specified dimensions.
|
|
|
|
Unlike :meth:`~Tensor.expand`, this function copies the tensor's data.
|
|
|
|
.. warning::
|
|
|
|
:func:`torch.repeat` behaves differently from
|
|
`numpy.repeat <https://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html>`_,
|
|
but is more similar to
|
|
`numpy.tile <https://docs.scipy.org/doc/numpy/reference/generated/numpy.tile.html>`_.
|
|
For the operator similar to `numpy.repeat`, see :func:`torch.repeat_interleave`.
|
|
|
|
Args:
|
|
sizes (torch.Size or int...): The number of times to repeat this tensor along each
|
|
dimension
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 2, 3])
|
|
>>> x.repeat(4, 2)
|
|
tensor([[ 1, 2, 3, 1, 2, 3],
|
|
[ 1, 2, 3, 1, 2, 3],
|
|
[ 1, 2, 3, 1, 2, 3],
|
|
[ 1, 2, 3, 1, 2, 3]])
|
|
>>> x.repeat(4, 2, 1).size()
|
|
torch.Size([4, 2, 3])
|
|
""")
|
|
|
|
add_docstr_all('repeat_interleave',
|
|
r"""
|
|
repeat_interleave(repeats, dim=None) -> Tensor
|
|
|
|
See :func:`torch.repeat_interleave`.
|
|
""")
|
|
|
|
add_docstr_all('requires_grad_',
|
|
r"""
|
|
requires_grad_(requires_grad=True) -> Tensor
|
|
|
|
Change if autograd should record operations on this tensor: sets this tensor's
|
|
:attr:`requires_grad` attribute in-place. Returns this tensor.
|
|
|
|
:func:`require_grad_`'s main use case is to tell autograd to begin recording
|
|
operations on a Tensor ``tensor``. If ``tensor`` has ``requires_grad=False``
|
|
(because it was obtained through a DataLoader, or required preprocessing or
|
|
initialization), ``tensor.requires_grad_()`` makes it so that autograd will
|
|
begin to record operations on ``tensor``.
|
|
|
|
Args:
|
|
requires_grad (bool): If autograd should record operations on this tensor.
|
|
Default: ``True``.
|
|
|
|
Example::
|
|
|
|
>>> # Let's say we want to preprocess some saved weights and use
|
|
>>> # the result as new weights.
|
|
>>> saved_weights = [0.1, 0.2, 0.3, 0.25]
|
|
>>> loaded_weights = torch.tensor(saved_weights)
|
|
>>> weights = preprocess(loaded_weights) # some function
|
|
>>> weights
|
|
tensor([-0.5503, 0.4926, -2.1158, -0.8303])
|
|
|
|
>>> # Now, start to record operations done to weights
|
|
>>> weights.requires_grad_()
|
|
>>> out = weights.pow(2).sum()
|
|
>>> out.backward()
|
|
>>> weights.grad
|
|
tensor([-1.1007, 0.9853, -4.2316, -1.6606])
|
|
|
|
""")
|
|
|
|
add_docstr_all('reshape',
|
|
r"""
|
|
reshape(*shape) -> Tensor
|
|
|
|
Returns a tensor with the same data and number of elements as :attr:`self`
|
|
but with the specified shape. This method returns a view if :attr:`shape` is
|
|
compatible with the current shape. See :meth:`torch.Tensor.view` on when it is
|
|
possible to return a view.
|
|
|
|
See :func:`torch.reshape`
|
|
|
|
Args:
|
|
shape (tuple of ints or int...): the desired shape
|
|
|
|
""")
|
|
|
|
add_docstr_all('reshape_as',
|
|
r"""
|
|
reshape_as(other) -> Tensor
|
|
|
|
Returns this tensor as the same shape as :attr:`other`.
|
|
``self.reshape_as(other)`` is equivalent to ``self.reshape(other.sizes())``.
|
|
This method returns a view if ``other.sizes()`` is compatible with the current
|
|
shape. See :meth:`torch.Tensor.view` on when it is possible to return a view.
|
|
|
|
Please see :meth:`reshape` for more information about ``reshape``.
|
|
|
|
Args:
|
|
other (:class:`torch.Tensor`): The result tensor has the same shape
|
|
as :attr:`other`.
|
|
""")
|
|
|
|
add_docstr_all('resize_',
|
|
r"""
|
|
resize_(*sizes) -> Tensor
|
|
|
|
Resizes :attr:`self` tensor to the specified size. If the number of elements is
|
|
larger than the current storage size, then the underlying storage is resized
|
|
to fit the new number of elements. If the number of elements is smaller, the
|
|
underlying storage is not changed. Existing elements are preserved but any new
|
|
memory is uninitialized.
|
|
|
|
.. warning::
|
|
|
|
This is a low-level method. The storage is reinterpreted as C-contiguous,
|
|
ignoring the current strides (unless the target size equals the current
|
|
size, in which case the tensor is left unchanged). For most purposes, you
|
|
will instead want to use :meth:`~Tensor.view()`, which checks for
|
|
contiguity, or :meth:`~Tensor.reshape()`, which copies data if needed. To
|
|
change the size in-place with custom strides, see :meth:`~Tensor.set_()`.
|
|
|
|
Args:
|
|
sizes (torch.Size or int...): the desired size
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([[1, 2], [3, 4], [5, 6]])
|
|
>>> x.resize_(2, 2)
|
|
tensor([[ 1, 2],
|
|
[ 3, 4]])
|
|
""")
|
|
|
|
add_docstr_all('resize_as_',
|
|
r"""
|
|
resize_as_(tensor) -> Tensor
|
|
|
|
Resizes the :attr:`self` tensor to be the same size as the specified
|
|
:attr:`tensor`. This is equivalent to ``self.resize_(tensor.size())``.
|
|
""")
|
|
|
|
add_docstr_all('rot90',
|
|
r"""
|
|
rot90(k, dims) -> Tensor
|
|
|
|
See :func:`torch.rot90`
|
|
""")
|
|
|
|
add_docstr_all('round',
|
|
r"""
|
|
round() -> Tensor
|
|
|
|
See :func:`torch.round`
|
|
""")
|
|
|
|
add_docstr_all('round_',
|
|
r"""
|
|
round_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.round`
|
|
""")
|
|
|
|
add_docstr_all('rsqrt',
|
|
r"""
|
|
rsqrt() -> Tensor
|
|
|
|
See :func:`torch.rsqrt`
|
|
""")
|
|
|
|
add_docstr_all('rsqrt_',
|
|
r"""
|
|
rsqrt_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.rsqrt`
|
|
""")
|
|
|
|
add_docstr_all('scatter_',
|
|
r"""
|
|
scatter_(dim, index, src) -> Tensor
|
|
|
|
Writes all values from the tensor :attr:`src` into :attr:`self` at the indices
|
|
specified in the :attr:`index` tensor. For each value in :attr:`src`, its output
|
|
index is specified by its index in :attr:`src` for ``dimension != dim`` and by
|
|
the corresponding value in :attr:`index` for ``dimension = dim``.
|
|
|
|
For a 3-D tensor, :attr:`self` is updated as::
|
|
|
|
self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0
|
|
self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1
|
|
self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2
|
|
|
|
This is the reverse operation of the manner described in :meth:`~Tensor.gather`.
|
|
|
|
:attr:`self`, :attr:`index` and :attr:`src` (if it is a Tensor) should have same
|
|
number of dimensions. It is also required that ``index.size(d) <= src.size(d)``
|
|
for all dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all
|
|
dimensions ``d != dim``.
|
|
|
|
Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be
|
|
between ``0`` and ``self.size(dim) - 1`` inclusive, and all values in a row
|
|
along the specified dimension :attr:`dim` must be unique.
|
|
|
|
Args:
|
|
dim (int): the axis along which to index
|
|
index (LongTensor): the indices of elements to scatter,
|
|
can be either empty or the same size of src.
|
|
When empty, the operation returns identity
|
|
src (Tensor): the source element(s) to scatter,
|
|
incase `value` is not specified
|
|
value (float): the source element(s) to scatter,
|
|
incase `src` is not specified
|
|
|
|
Example::
|
|
|
|
>>> x = torch.rand(2, 5)
|
|
>>> x
|
|
tensor([[ 0.3992, 0.2908, 0.9044, 0.4850, 0.6004],
|
|
[ 0.5735, 0.9006, 0.6797, 0.4152, 0.1732]])
|
|
>>> torch.zeros(3, 5).scatter_(0, torch.tensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]), x)
|
|
tensor([[ 0.3992, 0.9006, 0.6797, 0.4850, 0.6004],
|
|
[ 0.0000, 0.2908, 0.0000, 0.4152, 0.0000],
|
|
[ 0.5735, 0.0000, 0.9044, 0.0000, 0.1732]])
|
|
|
|
>>> z = torch.zeros(2, 4).scatter_(1, torch.tensor([[2], [3]]), 1.23)
|
|
>>> z
|
|
tensor([[ 0.0000, 0.0000, 1.2300, 0.0000],
|
|
[ 0.0000, 0.0000, 0.0000, 1.2300]])
|
|
""")
|
|
|
|
add_docstr_all('scatter_add_',
|
|
r"""
|
|
scatter_add_(dim, index, other) -> Tensor
|
|
|
|
Adds all values from the tensor :attr:`other` into :attr:`self` at the indices
|
|
specified in the :attr:`index` tensor in a similar fashion as
|
|
:meth:`~torch.Tensor.scatter_`. For each value in :attr:`other`, it is added to
|
|
an index in :attr:`self` which is specified by its index in :attr:`other`
|
|
for ``dimension != dim`` and by the corresponding value in :attr:`index` for
|
|
``dimension = dim``.
|
|
|
|
For a 3-D tensor, :attr:`self` is updated as::
|
|
|
|
self[index[i][j][k]][j][k] += other[i][j][k] # if dim == 0
|
|
self[i][index[i][j][k]][k] += other[i][j][k] # if dim == 1
|
|
self[i][j][index[i][j][k]] += other[i][j][k] # if dim == 2
|
|
|
|
:attr:`self`, :attr:`index` and :attr:`other` should have same number of
|
|
dimensions. It is also required that ``index.size(d) <= other.size(d)`` for all
|
|
dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions
|
|
``d != dim``.
|
|
|
|
Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be
|
|
between ``0`` and ``self.size(dim) - 1`` inclusive, and all values in a row along
|
|
the specified dimension :attr:`dim` must be unique.
|
|
|
|
.. include:: cuda_deterministic.rst
|
|
|
|
Args:
|
|
dim (int): the axis along which to index
|
|
index (LongTensor): the indices of elements to scatter and add,
|
|
can be either empty or the same size of src.
|
|
When empty, the operation returns identity.
|
|
other (Tensor): the source elements to scatter and add
|
|
|
|
Example::
|
|
|
|
>>> x = torch.rand(2, 5)
|
|
>>> x
|
|
tensor([[0.7404, 0.0427, 0.6480, 0.3806, 0.8328],
|
|
[0.7953, 0.2009, 0.9154, 0.6782, 0.9620]])
|
|
>>> torch.ones(3, 5).scatter_add_(0, torch.tensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]), x)
|
|
tensor([[1.7404, 1.2009, 1.9154, 1.3806, 1.8328],
|
|
[1.0000, 1.0427, 1.0000, 1.6782, 1.0000],
|
|
[1.7953, 1.0000, 1.6480, 1.0000, 1.9620]])
|
|
|
|
""")
|
|
|
|
add_docstr_all('select',
|
|
r"""
|
|
select(dim, index) -> Tensor
|
|
|
|
Slices the :attr:`self` tensor along the selected dimension at the given index.
|
|
This function returns a tensor with the given dimension removed.
|
|
|
|
Args:
|
|
dim (int): the dimension to slice
|
|
index (int): the index to select with
|
|
|
|
.. note::
|
|
|
|
:meth:`select` is equivalent to slicing. For example,
|
|
``tensor.select(0, index)`` is equivalent to ``tensor[index]`` and
|
|
``tensor.select(2, index)`` is equivalent to ``tensor[:,:,index]``.
|
|
""")
|
|
|
|
add_docstr_all('set_',
|
|
r"""
|
|
set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor
|
|
|
|
Sets the underlying storage, size, and strides. If :attr:`source` is a tensor,
|
|
:attr:`self` tensor will share the same storage and have the same size and
|
|
strides as :attr:`source`. Changes to elements in one tensor will be reflected
|
|
in the other.
|
|
|
|
If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying
|
|
storage, offset, size, and stride.
|
|
|
|
Args:
|
|
source (Tensor or Storage): the tensor or storage to use
|
|
storage_offset (int, optional): the offset in the storage
|
|
size (torch.Size, optional): the desired size. Defaults to the size of the source.
|
|
stride (tuple, optional): the desired stride. Defaults to C-contiguous strides.
|
|
""")
|
|
|
|
add_docstr_all('sigmoid',
|
|
r"""
|
|
sigmoid() -> Tensor
|
|
|
|
See :func:`torch.sigmoid`
|
|
""")
|
|
|
|
add_docstr_all('sigmoid_',
|
|
r"""
|
|
sigmoid_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sigmoid`
|
|
""")
|
|
|
|
add_docstr_all('sign',
|
|
r"""
|
|
sign() -> Tensor
|
|
|
|
See :func:`torch.sign`
|
|
""")
|
|
|
|
add_docstr_all('sign_',
|
|
r"""
|
|
sign_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sign`
|
|
""")
|
|
|
|
add_docstr_all('sin',
|
|
r"""
|
|
sin() -> Tensor
|
|
|
|
See :func:`torch.sin`
|
|
""")
|
|
|
|
add_docstr_all('sin_',
|
|
r"""
|
|
sin_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sin`
|
|
""")
|
|
|
|
add_docstr_all('sinh',
|
|
r"""
|
|
sinh() -> Tensor
|
|
|
|
See :func:`torch.sinh`
|
|
""")
|
|
|
|
add_docstr_all('sinh_',
|
|
r"""
|
|
sinh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sinh`
|
|
""")
|
|
|
|
add_docstr_all('size',
|
|
r"""
|
|
size() -> torch.Size
|
|
|
|
Returns the size of the :attr:`self` tensor. The returned value is a subclass of
|
|
:class:`tuple`.
|
|
|
|
Example::
|
|
|
|
>>> torch.empty(3, 4, 5).size()
|
|
torch.Size([3, 4, 5])
|
|
|
|
""")
|
|
|
|
add_docstr_all('solve',
|
|
r"""
|
|
solve(A) -> Tensor, Tensor
|
|
|
|
See :func:`torch.solve`
|
|
""")
|
|
|
|
add_docstr_all('sort',
|
|
r"""
|
|
sort(dim=-1, descending=False) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.sort`
|
|
""")
|
|
|
|
add_docstr_all('argsort',
|
|
r"""
|
|
argsort(dim=-1, descending=False) -> LongTensor
|
|
|
|
See :func: `torch.argsort`
|
|
""")
|
|
|
|
add_docstr_all('sparse_dim',
|
|
r"""
|
|
sparse_dim() -> int
|
|
|
|
If :attr:`self` is a sparse COO tensor (i.e., with ``torch.sparse_coo`` layout),
|
|
this returns a the number of sparse dimensions. Otherwise, this throws an
|
|
error.
|
|
|
|
See also :meth:`Tensor.dense_dim`.
|
|
""")
|
|
|
|
add_docstr_all('sqrt',
|
|
r"""
|
|
sqrt() -> Tensor
|
|
|
|
See :func:`torch.sqrt`
|
|
""")
|
|
|
|
add_docstr_all('sqrt_',
|
|
r"""
|
|
sqrt_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sqrt`
|
|
""")
|
|
|
|
add_docstr_all('squeeze',
|
|
r"""
|
|
squeeze(dim=None) -> Tensor
|
|
|
|
See :func:`torch.squeeze`
|
|
""")
|
|
|
|
add_docstr_all('squeeze_',
|
|
r"""
|
|
squeeze_(dim=None) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.squeeze`
|
|
""")
|
|
|
|
add_docstr_all('std',
|
|
r"""
|
|
std(dim=None, unbiased=True, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.std`
|
|
""")
|
|
|
|
add_docstr_all('storage',
|
|
r"""
|
|
storage() -> torch.Storage
|
|
|
|
Returns the underlying storage.
|
|
""")
|
|
|
|
add_docstr_all('storage_offset',
|
|
r"""
|
|
storage_offset() -> int
|
|
|
|
Returns :attr:`self` tensor's offset in the underlying storage in terms of
|
|
number of storage elements (not bytes).
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 2, 3, 4, 5])
|
|
>>> x.storage_offset()
|
|
0
|
|
>>> x[3:].storage_offset()
|
|
3
|
|
|
|
""")
|
|
|
|
add_docstr_all('storage_type',
|
|
r"""
|
|
storage_type() -> type
|
|
|
|
Returns the type of the underlying storage.
|
|
""")
|
|
|
|
add_docstr_all('stride',
|
|
r"""
|
|
stride(dim) -> tuple or int
|
|
|
|
Returns the stride of :attr:`self` tensor.
|
|
|
|
Stride is the jump necessary to go from one element to the next one in the
|
|
specified dimension :attr:`dim`. A tuple of all strides is returned when no
|
|
argument is passed in. Otherwise, an integer value is returned as the stride in
|
|
the particular dimension :attr:`dim`.
|
|
|
|
Args:
|
|
dim (int, optional): the desired dimension in which stride is required
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
|
|
>>> x.stride()
|
|
(5, 1)
|
|
>>>x.stride(0)
|
|
5
|
|
>>> x.stride(-1)
|
|
1
|
|
|
|
""")
|
|
|
|
add_docstr_all('sub',
|
|
r"""
|
|
sub(value, other) -> Tensor
|
|
|
|
Subtracts a scalar or tensor from :attr:`self` tensor. If both :attr:`value` and
|
|
:attr:`other` are specified, each element of :attr:`other` is scaled by
|
|
:attr:`value` before being used.
|
|
|
|
When :attr:`other` is a tensor, the shape of :attr:`other` must be
|
|
:ref:`broadcastable <broadcasting-semantics>` with the shape of the underlying
|
|
tensor.
|
|
|
|
""")
|
|
|
|
add_docstr_all('sub_',
|
|
r"""
|
|
sub_(x) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sub`
|
|
""")
|
|
|
|
add_docstr_all('sum',
|
|
r"""
|
|
sum(dim=None, keepdim=False, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.sum`
|
|
""")
|
|
|
|
add_docstr_all('svd',
|
|
r"""
|
|
svd(some=True, compute_uv=True) -> (Tensor, Tensor, Tensor)
|
|
|
|
See :func:`torch.svd`
|
|
""")
|
|
|
|
add_docstr_all('symeig',
|
|
r"""
|
|
symeig(eigenvectors=False, upper=True) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.symeig`
|
|
""")
|
|
|
|
add_docstr_all('t',
|
|
r"""
|
|
t() -> Tensor
|
|
|
|
See :func:`torch.t`
|
|
""")
|
|
|
|
add_docstr_all('t_',
|
|
r"""
|
|
t_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.t`
|
|
""")
|
|
|
|
add_docstr_all('to',
|
|
r"""
|
|
to(*args, **kwargs) -> Tensor
|
|
|
|
Performs Tensor dtype and/or device conversion. A :class:`torch.dtype` and :class:`torch.device` are
|
|
inferred from the arguments of ``self.to(*args, **kwargs)``.
|
|
|
|
.. note::
|
|
|
|
If the ``self`` Tensor already
|
|
has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned.
|
|
Otherwise, the returned tensor is a copy of ``self`` with the desired
|
|
:class:`torch.dtype` and :class:`torch.device`.
|
|
|
|
Here are the ways to call ``to``:
|
|
|
|
.. function:: to(dtype, non_blocking=False, copy=False) -> Tensor
|
|
|
|
Returns a Tensor with the specified :attr:`dtype`
|
|
|
|
.. function:: to(device=None, dtype=None, non_blocking=False, copy=False) -> Tensor
|
|
|
|
Returns a Tensor with the specified :attr:`device` and (optional)
|
|
:attr:`dtype`. If :attr:`dtype` is ``None`` it is inferred to be ``self.dtype``.
|
|
When :attr:`non_blocking`, tries to convert asynchronously with respect to
|
|
the host if possible, e.g., converting a CPU Tensor with pinned memory to a
|
|
CUDA Tensor.
|
|
When :attr:`copy` is set, a new Tensor is created even when the Tensor
|
|
already matches the desired conversion.
|
|
|
|
.. function:: to(other, non_blocking=False, copy=False) -> Tensor
|
|
|
|
Returns a Tensor with same :class:`torch.dtype` and :class:`torch.device` as
|
|
the Tensor :attr:`other`. When :attr:`non_blocking`, tries to convert
|
|
asynchronously with respect to the host if possible, e.g., converting a CPU
|
|
Tensor with pinned memory to a CUDA Tensor.
|
|
When :attr:`copy` is set, a new Tensor is created even when the Tensor
|
|
already matches the desired conversion.
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu
|
|
>>> tensor.to(torch.float64)
|
|
tensor([[-0.5044, 0.0005],
|
|
[ 0.3310, -0.0584]], dtype=torch.float64)
|
|
|
|
>>> cuda0 = torch.device('cuda:0')
|
|
>>> tensor.to(cuda0)
|
|
tensor([[-0.5044, 0.0005],
|
|
[ 0.3310, -0.0584]], device='cuda:0')
|
|
|
|
>>> tensor.to(cuda0, dtype=torch.float64)
|
|
tensor([[-0.5044, 0.0005],
|
|
[ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')
|
|
|
|
>>> other = torch.randn((), dtype=torch.float64, device=cuda0)
|
|
>>> tensor.to(other, non_blocking=True)
|
|
tensor([[-0.5044, 0.0005],
|
|
[ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')
|
|
|
|
""")
|
|
|
|
add_docstr_all('byte',
|
|
r"""
|
|
byte() -> Tensor
|
|
|
|
``self.byte()`` is equivalent to ``self.to(torch.uint8)``. See :func:`to`.
|
|
""")
|
|
|
|
add_docstr_all('bool',
|
|
r"""
|
|
bool() -> Tensor
|
|
|
|
``self.bool()`` is equivalent to ``self.to(torch.bool)``. See :func:`to`.
|
|
""")
|
|
|
|
add_docstr_all('char',
|
|
r"""
|
|
char() -> Tensor
|
|
|
|
``self.char()`` is equivalent to ``self.to(torch.int8)``. See :func:`to`.
|
|
""")
|
|
|
|
add_docstr_all('double',
|
|
r"""
|
|
double() -> Tensor
|
|
|
|
``self.double()`` is equivalent to ``self.to(torch.float64)``. See :func:`to`.
|
|
""")
|
|
|
|
add_docstr_all('float',
|
|
r"""
|
|
float() -> Tensor
|
|
|
|
``self.float()`` is equivalent to ``self.to(torch.float32)``. See :func:`to`.
|
|
""")
|
|
|
|
add_docstr_all('half',
|
|
r"""
|
|
half() -> Tensor
|
|
|
|
``self.half()`` is equivalent to ``self.to(torch.float16)``. See :func:`to`.
|
|
""")
|
|
|
|
add_docstr_all('int',
|
|
r"""
|
|
int() -> Tensor
|
|
|
|
``self.int()`` is equivalent to ``self.to(torch.int32)``. See :func:`to`.
|
|
""")
|
|
|
|
add_docstr_all('int_repr',
|
|
r"""
|
|
int_repr() -> Tensor
|
|
|
|
Given a quantized Tensor,
|
|
``self.int_repr()`` returns a CPU Tensor with uint8_t as data type that stores the
|
|
underlying uint8_t values of the given Tensor.
|
|
""")
|
|
|
|
|
|
add_docstr_all('long',
|
|
r"""
|
|
long() -> Tensor
|
|
|
|
``self.long()`` is equivalent to ``self.to(torch.int64)``. See :func:`to`.
|
|
""")
|
|
|
|
add_docstr_all('short',
|
|
r"""
|
|
short() -> Tensor
|
|
|
|
``self.short()`` is equivalent to ``self.to(torch.int16)``. See :func:`to`.
|
|
""")
|
|
|
|
add_docstr_all('take',
|
|
r"""
|
|
take(indices) -> Tensor
|
|
|
|
See :func:`torch.take`
|
|
""")
|
|
|
|
add_docstr_all('tan',
|
|
r"""
|
|
tan() -> Tensor
|
|
|
|
See :func:`torch.tan`
|
|
""")
|
|
|
|
add_docstr_all('tan_',
|
|
r"""
|
|
tan_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.tan`
|
|
""")
|
|
|
|
add_docstr_all('tanh',
|
|
r"""
|
|
tanh() -> Tensor
|
|
|
|
See :func:`torch.tanh`
|
|
""")
|
|
|
|
add_docstr_all('tanh_',
|
|
r"""
|
|
tanh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.tanh`
|
|
""")
|
|
|
|
add_docstr_all('tolist',
|
|
r""""
|
|
tolist() -> list or number
|
|
|
|
Returns the tensor as a (nested) list. For scalars, a standard
|
|
Python number is returned, just like with :meth:`~Tensor.item`.
|
|
Tensors are automatically moved to the CPU first if necessary.
|
|
|
|
This operation is not differentiable.
|
|
|
|
Examples::
|
|
|
|
>>> a = torch.randn(2, 2)
|
|
>>> a.tolist()
|
|
[[0.012766935862600803, 0.5415473580360413],
|
|
[-0.08909505605697632, 0.7729271650314331]]
|
|
>>> a[0,0].tolist()
|
|
0.012766935862600803
|
|
""")
|
|
|
|
add_docstr_all('topk',
|
|
r"""
|
|
topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.topk`
|
|
""")
|
|
|
|
add_docstr_all('to_sparse',
|
|
r"""
|
|
to_sparse(sparseDims) -> Tensor
|
|
Returns a sparse copy of the tensor. PyTorch supports sparse tensors in
|
|
:ref:`coordinate format <sparse-docs>`.
|
|
|
|
Args:
|
|
sparseDims (int, optional): the number of sparse dimensions to include in the new sparse tensor
|
|
|
|
Example::
|
|
|
|
>>> d = torch.tensor([[0, 0, 0], [9, 0, 10], [0, 0, 0]])
|
|
>>> d
|
|
tensor([[ 0, 0, 0],
|
|
[ 9, 0, 10],
|
|
[ 0, 0, 0]])
|
|
>>> d.to_sparse()
|
|
tensor(indices=tensor([[1, 1],
|
|
[0, 2]]),
|
|
values=tensor([ 9, 10]),
|
|
size=(3, 3), nnz=2, layout=torch.sparse_coo)
|
|
>>> d.to_sparse(1)
|
|
tensor(indices=tensor([[1]]),
|
|
values=tensor([[ 9, 0, 10]]),
|
|
size=(3, 3), nnz=1, layout=torch.sparse_coo)
|
|
""")
|
|
|
|
add_docstr_all('to_mkldnn',
|
|
r"""
|
|
to_mkldnn() -> Tensor
|
|
Returns a copy of the tensor in ``torch.mkldnn`` layout.
|
|
|
|
""")
|
|
|
|
add_docstr_all('trace',
|
|
r"""
|
|
trace() -> Tensor
|
|
|
|
See :func:`torch.trace`
|
|
""")
|
|
|
|
add_docstr_all('transpose',
|
|
r"""
|
|
transpose(dim0, dim1) -> Tensor
|
|
|
|
See :func:`torch.transpose`
|
|
""")
|
|
|
|
add_docstr_all('transpose_',
|
|
r"""
|
|
transpose_(dim0, dim1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.transpose`
|
|
""")
|
|
|
|
add_docstr_all('triangular_solve',
|
|
r"""
|
|
triangular_solve(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.triangular_solve`
|
|
""")
|
|
|
|
add_docstr_all('tril',
|
|
r"""
|
|
tril(k=0) -> Tensor
|
|
|
|
See :func:`torch.tril`
|
|
""")
|
|
|
|
add_docstr_all('tril_',
|
|
r"""
|
|
tril_(k=0) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.tril`
|
|
""")
|
|
|
|
add_docstr_all('triu',
|
|
r"""
|
|
triu(k=0) -> Tensor
|
|
|
|
See :func:`torch.triu`
|
|
""")
|
|
|
|
add_docstr_all('triu_',
|
|
r"""
|
|
triu_(k=0) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.triu`
|
|
""")
|
|
|
|
add_docstr_all('trunc',
|
|
r"""
|
|
trunc() -> Tensor
|
|
|
|
See :func:`torch.trunc`
|
|
""")
|
|
|
|
add_docstr_all('trunc_',
|
|
r"""
|
|
trunc_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.trunc`
|
|
""")
|
|
|
|
add_docstr_all('type',
|
|
r"""
|
|
type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor
|
|
Returns the type if `dtype` is not provided, else casts this object to
|
|
the specified type.
|
|
|
|
If this is already of the correct type, no copy is performed and the
|
|
original object is returned.
|
|
|
|
Args:
|
|
dtype (type or string): The desired type
|
|
non_blocking (bool): If ``True``, and the source is in pinned memory
|
|
and destination is on the GPU or vice versa, the copy is performed
|
|
asynchronously with respect to the host. Otherwise, the argument
|
|
has no effect.
|
|
**kwargs: For compatibility, may contain the key ``async`` in place of
|
|
the ``non_blocking`` argument. The ``async`` arg is deprecated.
|
|
""")
|
|
|
|
add_docstr_all('type_as',
|
|
r"""
|
|
type_as(tensor) -> Tensor
|
|
|
|
Returns this tensor cast to the type of the given tensor.
|
|
|
|
This is a no-op if the tensor is already of the correct type. This is
|
|
equivalent to ``self.type(tensor.type())``
|
|
|
|
Args:
|
|
tensor (Tensor): the tensor which has the desired type
|
|
""")
|
|
|
|
add_docstr_all('unfold',
|
|
r"""
|
|
unfold(dimension, size, step) -> Tensor
|
|
|
|
Returns a tensor which contains all slices of size :attr:`size` from
|
|
:attr:`self` tensor in the dimension :attr:`dimension`.
|
|
|
|
Step between two slices is given by :attr:`step`.
|
|
|
|
If `sizedim` is the size of dimension :attr:`dimension` for :attr:`self`, the size of
|
|
dimension :attr:`dimension` in the returned tensor will be
|
|
`(sizedim - size) / step + 1`.
|
|
|
|
An additional dimension of size :attr:`size` is appended in the returned tensor.
|
|
|
|
Args:
|
|
dimension (int): dimension in which unfolding happens
|
|
size (int): the size of each slice that is unfolded
|
|
step (int): the step between each slice
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(1., 8)
|
|
>>> x
|
|
tensor([ 1., 2., 3., 4., 5., 6., 7.])
|
|
>>> x.unfold(0, 2, 1)
|
|
tensor([[ 1., 2.],
|
|
[ 2., 3.],
|
|
[ 3., 4.],
|
|
[ 4., 5.],
|
|
[ 5., 6.],
|
|
[ 6., 7.]])
|
|
>>> x.unfold(0, 2, 2)
|
|
tensor([[ 1., 2.],
|
|
[ 3., 4.],
|
|
[ 5., 6.]])
|
|
""")
|
|
|
|
add_docstr_all('uniform_',
|
|
r"""
|
|
uniform_(from=0, to=1) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with numbers sampled from the continuous uniform
|
|
distribution:
|
|
|
|
.. math::
|
|
P(x) = \dfrac{1}{\text{to} - \text{from}}
|
|
""")
|
|
|
|
add_docstr_all('unsqueeze',
|
|
r"""
|
|
unsqueeze(dim) -> Tensor
|
|
|
|
See :func:`torch.unsqueeze`
|
|
""")
|
|
|
|
add_docstr_all('unsqueeze_',
|
|
r"""
|
|
unsqueeze_(dim) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.unsqueeze`
|
|
""")
|
|
|
|
add_docstr_all('var',
|
|
r"""
|
|
var(dim=None, unbiased=True, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.var`
|
|
""")
|
|
|
|
add_docstr_all('view',
|
|
r"""
|
|
view(*shape) -> Tensor
|
|
|
|
Returns a new tensor with the same data as the :attr:`self` tensor but of a
|
|
different :attr:`shape`.
|
|
|
|
The returned tensor shares the same data and must have the same number
|
|
of elements, but may have a different size. For a tensor to be viewed, the new
|
|
view size must be compatible with its original size and stride, i.e., each new
|
|
view dimension must either be a subspace of an original dimension, or only span
|
|
across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following
|
|
contiguity-like condition that :math:`\forall i = 0, \dots, k-1`,
|
|
|
|
.. math::
|
|
|
|
\text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1]
|
|
|
|
Otherwise, :meth:`contiguous` needs to be called before the tensor can be
|
|
viewed. See also: :meth:`reshape`, which returns a view if the shapes are
|
|
compatible, and copies (equivalent to calling :meth:`contiguous`) otherwise.
|
|
|
|
Args:
|
|
shape (torch.Size or int...): the desired size
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(4, 4)
|
|
>>> x.size()
|
|
torch.Size([4, 4])
|
|
>>> y = x.view(16)
|
|
>>> y.size()
|
|
torch.Size([16])
|
|
>>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions
|
|
>>> z.size()
|
|
torch.Size([2, 8])
|
|
|
|
>>> a = torch.randn(1, 2, 3, 4)
|
|
>>> a.size()
|
|
torch.Size([1, 2, 3, 4])
|
|
>>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension
|
|
>>> b.size()
|
|
torch.Size([1, 3, 2, 4])
|
|
>>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory
|
|
>>> c.size()
|
|
torch.Size([1, 3, 2, 4])
|
|
>>> torch.equal(b, c)
|
|
False
|
|
|
|
""")
|
|
|
|
add_docstr_all('view_as',
|
|
r"""
|
|
view_as(other) -> Tensor
|
|
|
|
View this tensor as the same size as :attr:`other`.
|
|
``self.view_as(other)`` is equivalent to ``self.view(other.size())``.
|
|
|
|
Please see :meth:`~Tensor.view` for more information about ``view``.
|
|
|
|
Args:
|
|
other (:class:`torch.Tensor`): The result tensor has the same size
|
|
as :attr:`other`.
|
|
""")
|
|
|
|
add_docstr_all('expand',
|
|
r"""
|
|
expand(*sizes) -> Tensor
|
|
|
|
Returns a new view of the :attr:`self` tensor with singleton dimensions expanded
|
|
to a larger size.
|
|
|
|
Passing -1 as the size for a dimension means not changing the size of
|
|
that dimension.
|
|
|
|
Tensor can be also expanded to a larger number of dimensions, and the
|
|
new ones will be appended at the front. For the new dimensions, the
|
|
size cannot be set to -1.
|
|
|
|
Expanding a tensor does not allocate new memory, but only creates a
|
|
new view on the existing tensor where a dimension of size one is
|
|
expanded to a larger size by setting the ``stride`` to 0. Any dimension
|
|
of size 1 can be expanded to an arbitrary value without allocating new
|
|
memory.
|
|
|
|
Args:
|
|
*sizes (torch.Size or int...): the desired expanded size
|
|
|
|
.. warning::
|
|
|
|
More than one element of an expanded tensor may refer to a single
|
|
memory location. As a result, in-place operations (especially ones that
|
|
are vectorized) may result in incorrect behavior. If you need to write
|
|
to the tensors, please clone them first.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([[1], [2], [3]])
|
|
>>> x.size()
|
|
torch.Size([3, 1])
|
|
>>> x.expand(3, 4)
|
|
tensor([[ 1, 1, 1, 1],
|
|
[ 2, 2, 2, 2],
|
|
[ 3, 3, 3, 3]])
|
|
>>> x.expand(-1, 4) # -1 means not changing the size of that dimension
|
|
tensor([[ 1, 1, 1, 1],
|
|
[ 2, 2, 2, 2],
|
|
[ 3, 3, 3, 3]])
|
|
""")
|
|
|
|
add_docstr_all('expand_as',
|
|
r"""
|
|
expand_as(other) -> Tensor
|
|
|
|
Expand this tensor to the same size as :attr:`other`.
|
|
``self.expand_as(other)`` is equivalent to ``self.expand(other.size())``.
|
|
|
|
Please see :meth:`~Tensor.expand` for more information about ``expand``.
|
|
|
|
Args:
|
|
other (:class:`torch.Tensor`): The result tensor has the same size
|
|
as :attr:`other`.
|
|
""")
|
|
|
|
add_docstr_all('sum_to_size',
|
|
r"""
|
|
sum_to_size(*size) -> Tensor
|
|
|
|
Sum ``this`` tensor to :attr:`size`.
|
|
:attr:`size` must be broadcastable to ``this`` tensor size.
|
|
Args:
|
|
other (:class:`torch.Tensor`): The result tensor has the same size
|
|
as :attr:`other`.
|
|
""")
|
|
|
|
|
|
add_docstr_all('zero_',
|
|
r"""
|
|
zero_() -> Tensor
|
|
|
|
Fills :attr:`self` tensor with zeros.
|
|
""")
|
|
|
|
add_docstr_all('matmul',
|
|
r"""
|
|
matmul(tensor2) -> Tensor
|
|
|
|
See :func:`torch.matmul`
|
|
""")
|
|
|
|
add_docstr_all('chunk',
|
|
r"""
|
|
chunk(chunks, dim=0) -> List of Tensors
|
|
|
|
See :func:`torch.chunk`
|
|
""")
|
|
|
|
add_docstr_all('stft',
|
|
r"""
|
|
stft(frame_length, hop, fft_size=None, return_onesided=True, window=None, pad_end=0) -> Tensor
|
|
|
|
See :func:`torch.stft`
|
|
""")
|
|
|
|
add_docstr_all('fft',
|
|
r"""
|
|
fft(signal_ndim, normalized=False) -> Tensor
|
|
|
|
See :func:`torch.fft`
|
|
""")
|
|
|
|
add_docstr_all('ifft',
|
|
r"""
|
|
ifft(signal_ndim, normalized=False) -> Tensor
|
|
|
|
See :func:`torch.ifft`
|
|
""")
|
|
|
|
add_docstr_all('rfft',
|
|
r"""
|
|
rfft(signal_ndim, normalized=False, onesided=True) -> Tensor
|
|
|
|
See :func:`torch.rfft`
|
|
""")
|
|
|
|
add_docstr_all('irfft',
|
|
r"""
|
|
irfft(signal_ndim, normalized=False, onesided=True, signal_sizes=None) -> Tensor
|
|
|
|
See :func:`torch.irfft`
|
|
""")
|
|
|
|
add_docstr_all('det',
|
|
r"""
|
|
det() -> Tensor
|
|
|
|
See :func:`torch.det`
|
|
""")
|
|
|
|
add_docstr_all('where',
|
|
r"""
|
|
where(condition, y) -> Tensor
|
|
|
|
``self.where(condition, y)`` is equivalent to ``torch.where(condition, self, y)``.
|
|
See :func:`torch.where`
|
|
""")
|
|
|
|
add_docstr_all('logdet',
|
|
r"""
|
|
logdet() -> Tensor
|
|
|
|
See :func:`torch.logdet`
|
|
""")
|
|
|
|
add_docstr_all('slogdet',
|
|
r"""
|
|
slogdet() -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.slogdet`
|
|
""")
|
|
|
|
add_docstr_all('unbind',
|
|
r"""
|
|
unbind(dim=0) -> seq
|
|
|
|
See :func:`torch.unbind`
|
|
""")
|
|
|
|
add_docstr_all('pin_memory',
|
|
r"""
|
|
pin_memory() -> Tensor
|
|
|
|
Copies the tensor to pinned memory, if it's not already pinned.
|
|
""")
|
|
|
|
add_docstr_all('pinverse',
|
|
r"""
|
|
pinverse() -> Tensor
|
|
|
|
See :func:`torch.pinverse`
|
|
""")
|
|
|
|
add_docstr_all('index_add',
|
|
r"""
|
|
index_add(dim, index, tensor) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.index_add_`
|
|
""")
|
|
|
|
add_docstr_all('index_copy',
|
|
r"""
|
|
index_copy(dim, index, tensor) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.index_copy_`
|
|
""")
|
|
|
|
add_docstr_all('index_fill',
|
|
r"""
|
|
index_fill(dim, index, value) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.index_fill_`
|
|
""")
|
|
|
|
add_docstr_all('scatter',
|
|
r"""
|
|
scatter(dim, index, source) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.scatter_`
|
|
""")
|
|
|
|
add_docstr_all('scatter_add',
|
|
r"""
|
|
scatter_add(dim, index, source) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.scatter_add_`
|
|
""")
|
|
|
|
add_docstr_all('masked_scatter',
|
|
r"""
|
|
masked_scatter(mask, tensor) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.masked_scatter_`
|
|
""")
|
|
|
|
add_docstr_all('masked_fill',
|
|
r"""
|
|
masked_fill(mask, value) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.masked_fill_`
|
|
""")
|
|
|
|
add_docstr_all('grad',
|
|
r"""
|
|
This attribute is ``None`` by default and becomes a Tensor the first time a call to
|
|
:func:`backward` computes gradients for ``self``.
|
|
The attribute will then contain the gradients computed and future calls to
|
|
:func:`backward` will accumulate (add) gradients into it.
|
|
""")
|
|
|
|
add_docstr_all('requires_grad',
|
|
r"""
|
|
Is ``True`` if gradients need to be computed for this Tensor, ``False`` otherwise.
|
|
|
|
.. note::
|
|
|
|
The fact that gradients need to be computed for a Tensor do not mean that the :attr:`grad`
|
|
attribute will be populated, see :attr:`is_leaf` for more details.
|
|
|
|
""")
|
|
|
|
add_docstr_all('is_leaf',
|
|
r"""
|
|
All Tensors that have :attr:`requires_grad` which is ``False`` will be leaf Tensors by convention.
|
|
|
|
For Tensors that have :attr:`requires_grad` which is ``True``, they will be leaf Tensors if they were
|
|
created by the user. This means that they are not the result of an operation and so
|
|
:attr:`grad_fn` is None.
|
|
|
|
Only leaf Tensors will have their :attr:`grad` populated during a call to :func:`backward`.
|
|
To get :attr:`grad` populated for non-leaf Tensors, you can use :func:`retain_grad`.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.rand(10, requires_grad=True)
|
|
>>> a.is_leaf
|
|
True
|
|
>>> b = torch.rand(10, requires_grad=True).cuda()
|
|
>>> b.is_leaf
|
|
False
|
|
# b was created by the operation that cast a cpu Tensor into a cuda Tensor
|
|
>>> c = torch.rand(10, requires_grad=True) + 2
|
|
>>> c.is_leaf
|
|
False
|
|
# c was created by the addition operation
|
|
>>> d = torch.rand(10).cuda()
|
|
>>> d.is_leaf
|
|
True
|
|
# d does not require gradients and so has no operation creating it (that is tracked by the autograd engine)
|
|
>>> e = torch.rand(10).cuda().requires_grad_()
|
|
>>> e.is_leaf
|
|
True
|
|
# e requires gradients and has no operations creating it
|
|
>>> f = torch.rand(10, requires_grad=True, device="cuda")
|
|
>>> f.is_leaf
|
|
True
|
|
# f requires grad, has no operation creating it
|
|
|
|
|
|
""")
|
|
|
|
add_docstr_all('is_cuda',
|
|
r"""
|
|
Is ``True`` if the Tensor is stored on the GPU, ``False`` otherwise.
|
|
""")
|
|
|
|
add_docstr_all('device',
|
|
r"""
|
|
Is the :class:`torch.device` where this Tensor is.
|
|
""")
|
|
|
|
add_docstr_all('ndim',
|
|
r"""
|
|
Alias for :meth:`~Tensor.dim()`
|
|
""")
|
|
|
|
add_docstr_all('T',
|
|
r"""
|
|
Is this Tensor with its dimensions reversed.
|
|
|
|
If ``n`` is the number of dimensions in ``x``,
|
|
``x.T`` is equivalent to ``x.permute(n-1, n-2, ..., 0)``.
|
|
""")
|