mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Adds an accelerated version of the embedding_lookup_idx perfkernels. This is done via a python codegen file similarly to `caffe2/perfkernels/hp_emblookup_codegen.py` Pull Request resolved: https://github.com/pytorch/pytorch/pull/133995 Approved by: https://github.com/malfet, https://github.com/huydhn
409 lines
15 KiB
Python
409 lines
15 KiB
Python
# mypy: allow-untyped-defs
|
|
import argparse
|
|
import sys
|
|
|
|
# Unroll loops when block_size is a multiple of vector length.
|
|
def unroll(num_unrolls, IndexType, InType, OutType, use_weights):
|
|
def compute(regid, InType, use_weights):
|
|
code = []
|
|
|
|
if InType == "float":
|
|
code.append(
|
|
f" vsum{regid} =\n"
|
|
" svmad_f32_x("
|
|
f"svAll, vwgt, svld1_f32(svAll, &ip[{regid} * vLen]),"
|
|
f" vsum{regid});"
|
|
)
|
|
elif InType == "at::Half":
|
|
code.append(
|
|
f" vsum{regid} = svmad_f32_x(\n"
|
|
" svAll,\n"
|
|
" vwgt,\n"
|
|
" svcvt_f32_f16_x(\n"
|
|
" svAll,\n"
|
|
" svreinterpret_f16_u32(svld1uh_u32(\n"
|
|
" svAll, reinterpret_cast<const uint16_t*>("
|
|
f"&ip[{regid} * vLen])))),\n" # noqa
|
|
f" vsum{regid});"
|
|
)
|
|
elif InType == "at::BFloat16":
|
|
code.append(
|
|
f" vsum{regid} = svmad_f32_x(\n"
|
|
" svAll,\n"
|
|
" vwgt,\n"
|
|
" svreinterpret_f32_u32(svlsl_n_u32_x(\n"
|
|
" svAll,\n"
|
|
" svld1uh_u32(\n"
|
|
" svAll, reinterpret_cast<const uint16_t*>("
|
|
f"&ip[{regid} * vLen])),\n"
|
|
" 16)),\n" # noqa
|
|
f" vsum{regid});"
|
|
)
|
|
elif InType == "uint8_t":
|
|
code.append(
|
|
f" vsum{regid} = svmad_f32_x(\n"
|
|
" svAll,\n"
|
|
" vwgt,\n"
|
|
" svcvt_f32_u32_x(svAll,"
|
|
f" svld1ub_u32(svAll, &ip[{regid} * vLen])),\n" # noqa
|
|
f" svadd_f32_x(svAll, vsum{regid}, vbio));"
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown datatype \"{InType}\"")
|
|
|
|
return code
|
|
|
|
code = []
|
|
code.append(f" // unrolling {num_unrolls} times")
|
|
|
|
code.append(" for (int64_t i = 0; i < output_size; ++i) {")
|
|
|
|
code.append(" " + OutType + "* const op = &out[i * block_size];")
|
|
code.append(
|
|
" if (pos != offsets[i] - offsets[0]) {\n"
|
|
+ " return false;\n"
|
|
+ " }"
|
|
)
|
|
|
|
# Initialise vector sum registers
|
|
for i in range(num_unrolls):
|
|
code.append(f" svfloat32_t vsum{i} = svdup_n_f32(0);")
|
|
|
|
# inner loop
|
|
code.append("""\
|
|
int64_t start_offset = offsets[i];
|
|
int64_t end_offset = offsets[i + 1];""")
|
|
code.append(
|
|
" for ("
|
|
+ "int64_t"
|
|
+ " j = start_offset; j < end_offset; ++j) {" # noqa
|
|
)
|
|
|
|
code.append(" const auto idx = indices[pos];")
|
|
code.append(
|
|
" if (idx < 0 || idx >= data_size) {\n"
|
|
+ " return false;\n"
|
|
+ " }"
|
|
)
|
|
|
|
if InType == "uint8_t":
|
|
code.append(" " + OutType + " wgt = 1.f;")
|
|
code.append(" " + OutType + " bio{};")
|
|
code.append(" if (weights) {")
|
|
code.append(
|
|
" wgt = weights[IS_WEIGHT_POSITIONAL ? (j - start_offset) : pos];" # noqa
|
|
)
|
|
code.append(" }")
|
|
code.append(" if (scale_bias) {")
|
|
code.append(" bio = wgt * scale_bias[2 * idx + 1];")
|
|
code.append(" wgt = wgt * scale_bias[2 * idx];")
|
|
code.append(" }")
|
|
code.append(" svfloat32_t vbio = svdup_n_f32(bio);")
|
|
else:
|
|
code.append(" " + OutType + " wgt = 1.f;")
|
|
code.append(" if (weights) {")
|
|
code.append(
|
|
" wgt = weights[IS_WEIGHT_POSITIONAL ? (j - start_offset) : pos];" # noqa
|
|
)
|
|
code.append(" }")
|
|
|
|
code.append(" const svfloat32_t vwgt = svdup_n_f32(wgt);")
|
|
code.append(f" const {InType}* const ip = &input[idx * block_size];")
|
|
code.append(" // weight * input + out")
|
|
|
|
for i in range(num_unrolls):
|
|
code.extend(compute(i, InType, use_weights))
|
|
|
|
code.append(" ++pos;")
|
|
code.append(" }")
|
|
|
|
code.append(" // Normalisation")
|
|
code.append(" const int64_t length = end_offset - start_offset;")
|
|
code.append(" if (normalize_by_lengths && length != 0) {")
|
|
code.append(" const float len_inv = 1.0f / length;")
|
|
code.append(" const svfloat32_t vlen_inv = svdup_n_f32(len_inv);")
|
|
|
|
for i in range(num_unrolls):
|
|
code.append(f" svst1_f32(svAll, &op[{i} * vLen],"
|
|
+ f" svmul_f32_x(svAll, vsum{i}, vlen_inv));")
|
|
|
|
code.append(" } else {")
|
|
# inv of length
|
|
for i in range(num_unrolls):
|
|
code.append(f" svst1_f32(svAll, &op[{i} * vLen], vsum{i});")
|
|
|
|
code.append(" }")
|
|
code.append(" }")
|
|
return code
|
|
|
|
|
|
# Handle the case where block_size is not a multiple of vector length.
|
|
def generic(IndexType, InType, OutType, use_weights):
|
|
def compute(InType, use_weights):
|
|
code = []
|
|
if InType == "float":
|
|
code.append(
|
|
" svst1_f32(\n"
|
|
" pg,\n"
|
|
" &op[k],\n"
|
|
" svmad_f32_x(\n"
|
|
" pg, vwgt, svld1_f32(pg, &ip[k]),"
|
|
" svld1_f32(pg, &op[k])));"
|
|
)
|
|
elif InType == "at::Half":
|
|
code.append(
|
|
" svst1_f32(\n"
|
|
" pg,\n"
|
|
" &op[k],\n"
|
|
" svmad_f32_x(\n"
|
|
" pg,\n"
|
|
" vwgt,\n"
|
|
" svcvt_f32_f16_x(\n"
|
|
" pg,\n"
|
|
" svreinterpret_f16_u32(svld1uh_u32(\n"
|
|
" pg,"
|
|
" reinterpret_cast<const uint16_t*>(&ip[k])))),\n"
|
|
" svld1_f32(pg, &op[k])));"
|
|
)
|
|
elif InType == "at::BFloat16":
|
|
code.append(
|
|
" svst1_f32(\n"
|
|
" pg,\n"
|
|
" &op[k],\n"
|
|
" svmad_f32_x(\n"
|
|
" pg,\n"
|
|
" vwgt,\n"
|
|
" svreinterpret_f32_u32(svlsl_n_u32_x(\n"
|
|
" pg,\n"
|
|
" svld1uh_u32(\n"
|
|
" pg,"
|
|
" reinterpret_cast<const uint16_t*>(&ip[k])),\n"
|
|
" 16)),\n"
|
|
" svld1_f32(pg, &op[k])));"
|
|
)
|
|
elif InType == "uint8_t":
|
|
code.append(
|
|
" svst1_f32(\n"
|
|
" pg,\n"
|
|
" &op[k],\n"
|
|
" svmad_f32_x(\n"
|
|
" pg,\n"
|
|
" vwgt,\n"
|
|
" svcvt_f32_u32_x(pg,"
|
|
" svld1ub_u32(pg, &ip[k])),\n" # noqa
|
|
" svadd_f32_x(pg,"
|
|
" svld1_f32(pg, &op[k]), vbio)));"
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown datatype \"{InType}\"")
|
|
|
|
return code
|
|
|
|
code = []
|
|
|
|
code.append(
|
|
" for (int64_t i = 0; i < output_size; ++i) {"
|
|
)
|
|
|
|
code.append(" " + OutType + "* const op = &out[i * block_size];")
|
|
|
|
# initialize to 0
|
|
code.append(" memset(op, 0, sizeof(float) * block_size);")
|
|
|
|
# inner loop
|
|
code.append(
|
|
" if (pos != offsets[i] - offsets[0]) {\n"
|
|
+ " return false;\n"
|
|
+ " }"
|
|
)
|
|
code.append(
|
|
" int64_t start_offset = offsets[i];\n"
|
|
+ " int64_t end_offset = offsets[i + 1];"
|
|
)
|
|
code.append(
|
|
" for ("
|
|
+ "int64_t"
|
|
+ " j = start_offset; j < end_offset; ++j) {" # noqa
|
|
)
|
|
|
|
code.append(" const auto idx = indices[pos];")
|
|
code.append(
|
|
" if (idx < 0 || idx >= data_size) {\n"
|
|
+ " return false;\n"
|
|
+ " }"
|
|
)
|
|
|
|
if InType == "uint8_t":
|
|
code.append(" // unimplemented")
|
|
code.append(" " + OutType + " wgt = 1.f;")
|
|
code.append(" " + OutType + " bio{};")
|
|
code.append(" if (weights) {")
|
|
code.append(
|
|
" wgt = weights[IS_WEIGHT_POSITIONAL ? (j - start_offset) : pos];" # noqa
|
|
)
|
|
code.append(" }")
|
|
code.append(" if (scale_bias) {")
|
|
code.append(" bio = wgt * scale_bias[2 * idx + 1];")
|
|
code.append(" wgt = wgt * scale_bias[2 * idx];")
|
|
code.append(" }")
|
|
code.append(" svfloat32_t vbio = svdup_n_f32(bio);")
|
|
else:
|
|
code.append(" " + OutType + " wgt = 1.f;")
|
|
code.append(" if (weights) {")
|
|
code.append(
|
|
" wgt = weights[IS_WEIGHT_POSITIONAL ? (j - start_offset) : pos];" # noqa
|
|
)
|
|
code.append(" }")
|
|
|
|
code.append(" const svfloat32_t vwgt = svdup_n_f32(wgt);")
|
|
code.append(f" const {InType}* ip = &input[idx * block_size];")
|
|
|
|
# compute and store main loop
|
|
code.append(" svbool_t pg;")
|
|
code.append(" for (int64_t k = 0;")
|
|
code.append(" svptest_first(svAll, pg = svwhilelt_b32_s64("
|
|
+ "k, block_size));")
|
|
code.append(" k += vLen) {")
|
|
code.extend(compute(InType, use_weights))
|
|
code.append(" }\n")
|
|
code.append(" ++pos;")
|
|
code.append(" }")
|
|
|
|
code.append(" const int64_t length = end_offset - start_offset;\n")
|
|
code.append(" if (normalize_by_lengths && length != 0) {")
|
|
code.append(" const float len_inv = 1.0f / length;")
|
|
code.append(" svfloat32_t vlen_inv = svdup_n_f32(len_inv);")
|
|
code.append(" svbool_t pg;")
|
|
code.append(" for (int64_t j = 0;\n"
|
|
" svptest_first(svAll, pg = svwhilelt_b32_s64("
|
|
"j, block_size));")
|
|
code.append(" j += vLen) {")
|
|
code.append(
|
|
" svst1_f32(\n"
|
|
" pg, &op[j], svmul_f32_x(pg, svld1_f32(pg, &op[j]), vlen_inv));"
|
|
)
|
|
code.append(" }")
|
|
code.append(" }")
|
|
code.append(" }")
|
|
return code
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-f", "--filename", help="file name")
|
|
opts = parser.parse_args()
|
|
if opts.filename:
|
|
filename = opts.filename
|
|
else:
|
|
filename = "embedding_lookup_idx_sve.cc"
|
|
|
|
options = [
|
|
["int32_t", "int32_t", "float", "float", "float", "float"],
|
|
["int64_t", "int64_t", "float", "float", "float", "float"],
|
|
["int32_t", "int32_t", "half", "at::Half", "float", "float"],
|
|
["int64_t", "int64_t", "half", "at::Half", "float", "float"],
|
|
["int32_t", "int32_t", "bfloat16", "at::BFloat16", "float", "float"],
|
|
["int64_t", "int64_t", "bfloat16", "at::BFloat16", "float", "float"],
|
|
["int32_t", "int32_t", "uint8_t", "uint8_t", "float", "float"],
|
|
["int64_t", "int64_t", "uint8_t", "uint8_t", "float", "float"],
|
|
]
|
|
|
|
code = []
|
|
# includes
|
|
code.append("//// --------------------------")
|
|
code.append("//// ATTENTION:")
|
|
code.append("//// THIS CODE IS AUTOGENERATED")
|
|
code.append(f"//// BY {' '.join(sys.argv)}")
|
|
code.append("//// DO NOT MODIFY!!!")
|
|
code.append("//// --------------------------\n")
|
|
|
|
code.append("#include <arm_sve.h>")
|
|
code.append("#include <c10/util/BFloat16.h>")
|
|
code.append("#include <c10/util/Half.h>")
|
|
code.append("#include <cstdint>")
|
|
code.append("#include <cstring>")
|
|
|
|
code.append("namespace caffe2 {\n")
|
|
for o in options:
|
|
[IndexTypeName, IndexType, InTypeName, InType, OutTypeName, OutType] = o
|
|
|
|
code.append("template <bool IS_WEIGHT_POSITIONAL>")
|
|
fn_base = f"EmbeddingLookupIdx_{IndexTypeName}_{InTypeName}_{OutTypeName}"
|
|
|
|
suffix = "__sve"
|
|
fn = "static bool " + fn_base + suffix
|
|
code.append(fn + "(")
|
|
|
|
args = []
|
|
args.append(" const int64_t block_size,")
|
|
args.append(" const int64_t output_size,")
|
|
args.append(" const int64_t index_size,")
|
|
args.append(" const int64_t data_size,")
|
|
args.append(" const " + InType + "* input,")
|
|
args.append(" const " + IndexType + "* indices,")
|
|
args.append(" const " + IndexType + "* offsets,")
|
|
args.append(" const float* weights,")
|
|
args.append(" const float* scale_bias,")
|
|
args.append(" bool normalize_by_lengths,")
|
|
args.append(" " + OutType + "* out) {")
|
|
code += args
|
|
|
|
code.append(" const svbool_t svAll = svptrue_b32();")
|
|
code.append(" const auto vLen = static_cast<int64_t>(svcntw());")
|
|
code.append(" int64_t pos = 0;")
|
|
|
|
code.append(" if (block_size == 32 * vLen) {")
|
|
code += unroll(32, IndexType, InType, OutType, True)
|
|
code.append(" } else if (block_size == 16 * vLen) {")
|
|
code += unroll(16, IndexType, InType, OutType, True)
|
|
code.append(" } else if (block_size == 8 * vLen) {")
|
|
code += unroll(8, IndexType, InType, OutType, True)
|
|
code.append(" } else if (block_size == 4 * vLen) {")
|
|
code += unroll(4, IndexType, InType, OutType, True)
|
|
code.append(" } else if (block_size == 2 * vLen) {")
|
|
code += unroll(2, IndexType, InType, OutType, True)
|
|
code.append(" } else {")
|
|
code.append(" // generic code:")
|
|
code += generic(IndexType, InType, OutType, True)
|
|
code.append(" }")
|
|
code.append(" return pos == index_size;")
|
|
|
|
code.append("}")
|
|
|
|
for is_weight_positional in ["false", "true"]:
|
|
code.append("bool " + fn_base + "_" + is_weight_positional + suffix + "(")
|
|
code += args
|
|
|
|
# Resolve the Lint warnings: Limit of 80 characters in one line.
|
|
extra_space = "\n "
|
|
ret_string = " return " + fn_base + suffix \
|
|
+ "<" + is_weight_positional + ">("
|
|
if len(ret_string) <= 80:
|
|
code.append(ret_string)
|
|
else:
|
|
code.append(" return " + fn_base + suffix + "<" + extra_space + is_weight_positional + ">(")
|
|
|
|
code.append(" block_size,")
|
|
code.append(" output_size,")
|
|
code.append(" index_size,")
|
|
code.append(" data_size,")
|
|
code.append(" input,")
|
|
code.append(" indices,")
|
|
code.append(" offsets,")
|
|
code.append(" weights,")
|
|
code.append(" scale_bias,")
|
|
code.append(" normalize_by_lengths,")
|
|
code.append(" out);")
|
|
code.append("}")
|
|
|
|
code.append("")
|
|
|
|
code.append("} // namespace caffe2")
|
|
|
|
with open(filename, "w") as fout:
|
|
fout.write("\n".join(code) + "\n")
|
|
|
|
print("Created " + filename)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|