pytorch/torch/csrc/distributed/c10d/ProcessGroup.cpp
Can Balioglu e1db2f13ce Refactor TORCH_DISTRIBUTED_DEBUG implementation (#73166)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73166

This PR refactors, cleans up, and optimizes the implementation of `TORCH_DISTRIBUTED_DEBUG`. It also introduces three new user APIs: `get_debug_level()`, `set_debug_level()`, and `set_debug_level_from_env()` to retrieve and modify the debug level after a process has started.
ghstack-source-id: 149778566

Test Plan: Run the existing unit tests.

Reviewed By: rohan-varma

Differential Revision: D34371226

fbshipit-source-id: e18443b411adcbaf39b2ec999178c198052fcd5b
(cherry picked from commit 26d6bb1584b83a0490d8b766482656a5887fa21d)
2022-02-24 02:33:05 +00:00

184 lines
5.1 KiB
C++

#include <ATen/ThreadLocalState.h>
#include <c10d/ProcessGroup.hpp>
#include <c10/util/Logging.h>
namespace c10d {
std::string opTypeToString(OpType opType) {
switch (opType) {
case OpType::BROADCAST:
return "BROADCAST";
case OpType::ALLREDUCE:
return "ALLREDUCE";
case OpType::ALLREDUCE_COALESCED:
return "ALLREDUCE_COALESCED";
case OpType::REDUCE:
return "REDUCE";
case OpType::ALLGATHER:
return "ALLGATHER";
case OpType::_ALLGATHER_BASE:
return "_ALLGATHER_BASE";
case OpType::ALLGATHER_COALESCED:
return "ALLGATHER_COALESCED";
case OpType::GATHER:
return "GATHER";
case OpType::SCATTER:
return "SCATTER";
case OpType::REDUCE_SCATTER:
return "REDUCE_SCATTER";
case OpType::ALLTOALL_BASE:
return "ALLTOALL_BASE";
case OpType::ALLTOALL:
return "ALLTOALL";
case OpType::SEND:
return "SEND";
case OpType::RECV:
return "RECV";
case OpType::RECVANYSOURCE:
return "RECVANYSOURCE";
case OpType::BARRIER:
return "BARRIER";
case OpType::UNKNOWN:
return "UNKNOWN";
case OpType::_REDUCE_SCATTER_BASE:
return "_REDUCE_SCATTER_BASE";
default:
TORCH_INTERNAL_ASSERT(false, "Unknown op type!");
}
return "UNKNOWN";
}
bool isP2POp(OpType opType) {
return opType == OpType::SEND || opType == OpType::RECV ||
opType == OpType::RECVANYSOURCE;
}
ProcessGroup::Work::Work(
int rank,
OpType opType,
const char* profilingTitle,
const c10::optional<std::vector<at::Tensor>>& inputTensors)
: rank_(rank), opType_(opType) {
if (profilingTitle != nullptr) {
auto recordingFunction =
std::make_shared<at::RecordFunction>(at::RecordScope::USER_SCOPE);
if (recordingFunction->isActive()) {
// Work events follow a future like pattern and can potentially be marked
// as complete by different threads, so explicitly set as async event.
recordingFunction->_setAsync();
// Passing input tensor to recordFunction allows for shape information in
// profiling output.
std::vector<c10::IValue> inputs;
if (inputTensors) {
inputs.reserve(inputTensors->size());
for (const auto& tensor : *inputTensors) {
inputs.emplace_back(tensor);
}
}
recordingFunction->before(profilingTitle, inputs);
std::function<void()> end_handler = [recordingFunction]() {
recordingFunction->end();
};
recordFunctionEndCallback_ = at::wrapPropagateTLSState(end_handler);
}
}
}
OpType ProcessGroup::Work::retrieveOpType() {
return opType_;
}
ProcessGroup::Work::~Work()=default;
bool ProcessGroup::Work::isCompleted() {
std::lock_guard<std::mutex> lock(mutex_);
return completed_;
}
bool ProcessGroup::Work::isSuccess() const {
std::lock_guard<std::mutex> lock(mutex_);
return !exception_;
}
std::exception_ptr ProcessGroup::Work::exception() const {
std::lock_guard<std::mutex> lock(mutex_);
return exception_;
}
int ProcessGroup::Work::sourceRank() const {
TORCH_CHECK(false,
"sourceRank() may only be called on work objects "
"that correspond to a recv or recv-from-any call.");
}
std::vector<at::Tensor> ProcessGroup::Work::result() {
TORCH_CHECK(false, "result() not implemented.");
}
void ProcessGroup::Work::synchronize() {}
bool ProcessGroup::Work::wait(std::chrono::milliseconds timeout) {
std::unique_lock<std::mutex> lock(mutex_);
if (timeout == kNoTimeout) {
// This waits without a timeout.
cv_.wait(lock, [&] { return completed_; });
} else {
// Waits for the user-provided timeout.
cv_.wait_for(lock, timeout, [&] { return completed_; });
if (!completed_) {
// Throw exception if the wait operation timed out and the work was not
// completed.
TORCH_CHECK(false, "Operation timed out!");
}
}
if (exception_) {
std::rethrow_exception(exception_);
}
synchronize();
// Always return true, because abort API is not implemented.
return true;
}
void ProcessGroup::Work::abort() {
TORCH_CHECK(false, "ProcessGroup::Work::abort not implemented.");
}
c10::intrusive_ptr<c10::ivalue::Future> ProcessGroup::Work::getFuture() {
TORCH_CHECK(false, "ProcessGroup::Work::getFuture not implemented.")
}
void ProcessGroup::Work::finish(std::exception_ptr exception) {
std::unique_lock<std::mutex> lock(mutex_);
completed_ = true;
exception_ = exception;
if (recordFunctionEndCallback_) {
recordFunctionEndCallback_();
recordFunctionEndCallback_ = nullptr;
}
lock.unlock();
cv_.notify_all();
}
void ProcessGroup::Work::finishAndThrow(std::exception_ptr exception) {
std::unique_lock<std::mutex> lock(mutex_);
completed_ = true;
exception_ = exception;
if (recordFunctionEndCallback_) {
recordFunctionEndCallback_();
recordFunctionEndCallback_ = nullptr;
}
if (exception_) {
std::rethrow_exception(exception_);
}
}
ProcessGroup::ProcessGroup(int rank, int size)
: rank_(rank), size_(size), dist_debug_level_(debug_level()) {
C10_LOG_API_USAGE_ONCE("c10d.process_group");
}
ProcessGroup::~ProcessGroup() {}
} // namespace c10d