mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/30894 This PR begins the process of removing BUILD_NAMEDTENSOR macros. There will be followups. Reasons for removing the macros: - BUILD_NAMEDTENSOR is always on and has been on since pytorch 1.3.0. - Since we don't test building without it, it is useless to keep around. - Code becomes nicer to read without the macros Reasons for not removing the macros: - potential for feature flagging Now, I argue against needing to feature flag. The main reason why we might want to feature flag is if we need to disable the feature. We'd need a fast switch to disable the feature if someone discovers in the future that named tensors caused some regression in some existing workflows. In https://github.com/pytorch/pytorch/pull/25798, I did a variety of macro- and micro- benchmarks to determine the performance impact of named tensors on regular tensors. [The microbenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-529014810) were not very stable, and running the microbenchmarks for more iterations doesn't actually help because the noise is not distributed in a nice way. Instead of microbenchmarks I ran a [profiler (perf)](https://github.com/pytorch/pytorch/pull/25798#issuecomment-555707645) to estimate how much overhead named tensors add to unnamed code. I estimated the overhead to be less than 100ns for `add` and even smaller for `mm`; there are ways to optimize even futher if we find this to be a problem. [Initial macrobenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-530539104) were also not very stable. I ran imagenet for some number of epochs. To make them more stable, I got rid of the data loading (which seemed to vary between runs). [In some benchmarkers without data loading](https://github.com/pytorch/pytorch/pull/25798#issuecomment-562214053), we can see that the results are less noisy now. These results support no noticeable regressions in speed. Test Plan: - wait for CI Differential Revision: D18858543 Pulled By: zou3519 fbshipit-source-id: 08bf3853a9f506c6b084808dc9ddd1e835f48c13
668 lines
21 KiB
C++
668 lines
21 KiB
C++
#pragma once
|
|
|
|
// Parse arguments to Python functions implemented in C++
|
|
// This is similar to PyArg_ParseTupleAndKeywords(), but specifically handles
|
|
// the types relevant to PyTorch and distinguishes between overloaded function
|
|
// signatures.
|
|
//
|
|
// Example:
|
|
//
|
|
// static PythonArgParser parser({
|
|
// "norm(Scalar p, int64_t dim, bool keepdim=False)",
|
|
// "norm(Scalar p=2)",
|
|
// });
|
|
// ParsedArgs<3> parsed_args;
|
|
// auto r = parser.parse(args, kwargs, parsed_args);
|
|
// if (r.idx == 0) {
|
|
// norm(r.scalar(0), r.int64(1), r.bool(0));
|
|
// } else {
|
|
// norm(r.scalar(0));
|
|
// }
|
|
//
|
|
// We auto-generate most uses of PythonArgParser; the generated files
|
|
// are torch/csrc/autograd/generated/python_*.cpp
|
|
//
|
|
// Some gotchas that you should watch out for:
|
|
//
|
|
// - Note [Order of overloads matters]
|
|
// Order of overloads matters. A set of input arguments may
|
|
// bind to multiple argument specs; we will always pick the
|
|
// first one in PythonArgParser. However, when you are writing
|
|
// overloads in, e.g., native_functions.yaml, you don't have to
|
|
// worry about what order you write them, because the code
|
|
// generation logic always gives the overloads a canonical
|
|
// order, where Tensor overloads come first, before Scalar overloads.
|
|
// This logic is in sort_declarations in
|
|
// tools/autograd/gen_python_functions.py
|
|
//
|
|
// - Zero-dim tensors (e.g., torch.tensor(2)) bind to both
|
|
// Scalar and Tensor, UNLESS they require grad (in which case
|
|
// they only bind to Tensor).
|
|
|
|
|
|
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/Dtype.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Generator.h>
|
|
#include <torch/csrc/MemoryFormat.h>
|
|
#include <torch/csrc/QScheme.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/jit/tracer.h>
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <ATen/core/EnableNamedTensor.h>
|
|
#include <torch/csrc/python_dimname.h>
|
|
#include <torch/csrc/tensor/python_tensor.h>
|
|
#include <torch/csrc/utils/numpy_stub.h>
|
|
#include <torch/csrc/utils/object_ptr.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/six.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <c10/util/Exception.h>
|
|
|
|
#include <array>
|
|
#include <cstddef>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
|
|
enum class ParameterType {
|
|
TENSOR, SCALAR, INT64, DOUBLE, COMPLEX, TENSOR_LIST, INT_LIST, GENERATOR,
|
|
BOOL, STORAGE, PYOBJECT, SCALARTYPE, LAYOUT, MEMORY_FORMAT, DEVICE, STRING,
|
|
DIMNAME, DIMNAME_LIST, QSCHEME
|
|
};
|
|
|
|
struct FunctionParameter;
|
|
struct FunctionSignature;
|
|
struct PythonArgs;
|
|
|
|
// Contains bound Python arguments in declaration order
|
|
template<int N>
|
|
struct ParsedArgs {
|
|
ParsedArgs() : args() { }
|
|
PyObject* args[N];
|
|
};
|
|
|
|
struct PythonArgParser {
|
|
explicit PythonArgParser(std::vector<std::string> fmts, bool traceable=false);
|
|
|
|
// meant only for `torch` functions.
|
|
template<int N>
|
|
inline PythonArgs parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst);
|
|
|
|
private:
|
|
[[noreturn]]
|
|
void print_error(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]);
|
|
PythonArgs raw_parse(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]);
|
|
|
|
std::vector<FunctionSignature> signatures_;
|
|
std::string function_name;
|
|
ssize_t max_args;
|
|
bool traceable;
|
|
};
|
|
|
|
struct PythonArgs {
|
|
PythonArgs(int idx, bool traceable, const FunctionSignature& signature, PyObject** args)
|
|
: idx(idx)
|
|
, traceable(traceable)
|
|
, signature(signature)
|
|
, args(args) {}
|
|
|
|
int idx;
|
|
bool traceable;
|
|
const FunctionSignature& signature;
|
|
PyObject** args;
|
|
|
|
inline bool has_torch_function();
|
|
inline std::string get_func_name();
|
|
inline at::Tensor tensor(int i);
|
|
inline at::Scalar scalar(int i);
|
|
inline at::Scalar scalarWithDefault(int i, at::Scalar default_scalar);
|
|
inline std::vector<at::Tensor> tensorlist(int i);
|
|
template<int N>
|
|
inline std::array<at::Tensor, N> tensorlist_n(int i);
|
|
inline std::vector<int64_t> intlist(int i);
|
|
inline std::vector<int64_t> intlistWithDefault(int i, std::vector<int64_t> default_intlist);
|
|
inline at::Generator* generator(int i);
|
|
inline at::Storage storage(int i);
|
|
inline at::ScalarType scalartype(int i);
|
|
inline at::ScalarType scalartypeWithDefault(int i, at::ScalarType default_scalartype);
|
|
inline c10::optional<at::ScalarType> scalartypeOptional(int i);
|
|
inline c10::optional<at::Scalar> scalarOptional(int i);
|
|
inline c10::optional<int64_t> toInt64Optional(int i);
|
|
inline c10::optional<bool> toBoolOptional(int i);
|
|
inline const THPLayout& layout(int i);
|
|
inline const THPLayout& layoutWithDefault(int i, const THPLayout& default_layout);
|
|
inline at::Device device(int i);
|
|
inline at::Device deviceWithDefault(int i, const at::Device& default_device);
|
|
inline c10::optional<at::Device> deviceOptional(int i);
|
|
inline at::Dimname dimname(int i);
|
|
inline std::vector<at::Dimname> dimnamelist(int i);
|
|
inline c10::optional<std::vector<at::Dimname>> toDimnameListOptional(int i);
|
|
inline at::MemoryFormat memoryformat(int i);
|
|
inline c10::optional<at::MemoryFormat> memoryformatOptional(int i);
|
|
inline at::QScheme toQScheme(int i);
|
|
inline std::string string(int i);
|
|
inline PyObject* pyobject(int i);
|
|
inline int64_t toInt64(int i);
|
|
inline int64_t toInt64WithDefault(int i, int64_t default_int);
|
|
inline double toDouble(int i);
|
|
inline double toDoubleWithDefault(int i, double default_double);
|
|
inline std::complex<double> toComplex(int i);
|
|
inline std::complex<double> toComplexWithDefault(int i, std::complex<double> default_complex);
|
|
inline bool toBool(int i);
|
|
inline bool toBoolWithDefault(int i, bool default_bool);
|
|
inline bool isNone(int i);
|
|
|
|
private:
|
|
at::Tensor tensor_slow(int i);
|
|
at::Scalar scalar_slow(int i);
|
|
};
|
|
|
|
struct PYBIND11_EXPORT FunctionSignature {
|
|
explicit FunctionSignature(const std::string& fmt);
|
|
|
|
bool parse(PyObject* args, PyObject* kwargs, PyObject* dst[], bool raise_exception);
|
|
|
|
std::string toString() const;
|
|
|
|
std::string name;
|
|
std::vector<FunctionParameter> params;
|
|
std::vector<py::handle> overloaded_args;
|
|
ssize_t min_args;
|
|
ssize_t max_args;
|
|
ssize_t max_pos_args;
|
|
bool hidden;
|
|
bool deprecated;
|
|
};
|
|
|
|
struct FunctionParameter {
|
|
FunctionParameter(const std::string& fmt, bool keyword_only);
|
|
|
|
bool check(PyObject* obj, std::vector<py::handle> &overloaded_args);
|
|
|
|
void set_default_str(const std::string& str);
|
|
std::string type_name() const;
|
|
|
|
ParameterType type_;
|
|
bool optional;
|
|
bool allow_none;
|
|
bool keyword_only;
|
|
bool allow_numbers_as_tensors = false;
|
|
int size;
|
|
std::string name;
|
|
// having this as a raw PyObject * will presumably leak it, but these are only held by static objects
|
|
// anyway, and Py_Finalize can already be called when this is destructed.
|
|
PyObject *python_name;
|
|
at::SmallVector<PyObject *, 5> numpy_python_names;
|
|
at::Scalar default_scalar;
|
|
std::vector<int64_t> default_intlist;
|
|
union {
|
|
bool default_bool;
|
|
int64_t default_int;
|
|
double default_double;
|
|
double default_complex[2]; // see Scalar
|
|
at::ScalarType default_scalartype;
|
|
THPLayout* default_layout;
|
|
};
|
|
};
|
|
|
|
template<int N>
|
|
inline PythonArgs PythonArgParser::parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst) {
|
|
if (N < max_args) {
|
|
throw ValueError("PythonArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)",
|
|
(int)max_args, N);
|
|
}
|
|
return raw_parse(args, kwargs, dst.args);
|
|
}
|
|
|
|
inline bool PythonArgs::has_torch_function(){
|
|
return !this->signature.overloaded_args.empty();
|
|
}
|
|
|
|
inline std::string PythonArgs::get_func_name(){
|
|
return signature.name;
|
|
}
|
|
|
|
inline at::Tensor PythonArgs::tensor(int i) {
|
|
if (args[i] && THPVariable_CheckExact(args[i])) {
|
|
return reinterpret_cast<THPVariable*>(args[i])->cdata;
|
|
}
|
|
return tensor_slow(i);
|
|
}
|
|
|
|
inline at::Scalar PythonArgs::scalar(int i) {
|
|
if (!args[i]) return signature.params[i].default_scalar;
|
|
return scalar_slow(i);
|
|
}
|
|
|
|
inline at::Scalar PythonArgs::scalarWithDefault(int i, at::Scalar default_scalar) {
|
|
if (!args[i]) return default_scalar;
|
|
return scalar_slow(i);
|
|
}
|
|
|
|
inline c10::optional<at::Scalar> PythonArgs::scalarOptional(int i) {
|
|
if (!args[i]) return c10::nullopt;
|
|
return scalar_slow(i);
|
|
}
|
|
|
|
inline std::vector<at::Tensor> PythonArgs::tensorlist(int i) {
|
|
if (!args[i]) return std::vector<at::Tensor>();
|
|
auto tuple = six::isTuple(args[i]);
|
|
THPObjectPtr arg = six::maybeAsTuple(args[i]);
|
|
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
|
|
std::vector<at::Tensor> res(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx);
|
|
if (!THPVariable_Check(obj)) {
|
|
throw TypeError("expected Tensor as element %d in argument %d, but got %s",
|
|
idx, i, Py_TYPE(obj)->tp_name);
|
|
}
|
|
res[idx] = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template<int N>
|
|
inline std::array<at::Tensor, N> PythonArgs::tensorlist_n(int i) {
|
|
auto res = std::array<at::Tensor, N>();
|
|
if (!args[i]) return res;
|
|
auto tuple = six::isTuple(args[i]);
|
|
THPObjectPtr arg = six::maybeAsTuple(args[i]);
|
|
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
|
|
if (size != N) {
|
|
throw TypeError("expected tuple of %d elements but got %d", N, (int)size);
|
|
}
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx);
|
|
if (!THPVariable_Check(obj)) {
|
|
throw TypeError("expected Tensor as element %d in argument %d, but got %s",
|
|
idx, i, Py_TYPE(obj)->tp_name);
|
|
}
|
|
res[idx] = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline std::vector<int64_t> PythonArgs::intlist(int i) {
|
|
return intlistWithDefault(i, signature.params[i].default_intlist);
|
|
}
|
|
|
|
inline std::vector<int64_t> PythonArgs::intlistWithDefault(int i, std::vector<int64_t> default_intlist) {
|
|
if (!args[i]) return default_intlist;
|
|
PyObject* arg = args[i];
|
|
auto size = signature.params[i].size;
|
|
if (size > 0 && THPUtils_checkLong(arg)) {
|
|
return std::vector<int64_t>(size, THPUtils_unpackIndex(arg));
|
|
}
|
|
auto tuple = PyTuple_Check(arg);
|
|
size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
|
|
std::vector<int64_t> res(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
|
|
try {
|
|
// Elements of torch.Size are tensors during tracing, and we need to record extra
|
|
// information before they are turned into an IntArrayRef
|
|
if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) {
|
|
auto & var = THPVariable_Unpack(obj);
|
|
jit::tracer::ArgumentStash::stashIntArrayRefElem(
|
|
signature.params[i].name, size, idx, var);
|
|
res[idx] = var.item<int64_t>();
|
|
continue;
|
|
} else {
|
|
res[idx] = THPUtils_unpackIndex(obj);
|
|
}
|
|
} catch (const std::exception &e) {
|
|
throw TypeError("%s(): argument '%s' must be %s, but found element of type %s at pos %d",
|
|
signature.name.c_str(), signature.params[i].name.c_str(),
|
|
signature.params[i].type_name().c_str(), Py_TYPE(obj)->tp_name, idx + 1);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline at::ScalarType PythonArgs::scalartypeWithDefault(int i, at::ScalarType default_scalartype) {
|
|
if (!args[i]) return default_scalartype;
|
|
return scalartype(i);
|
|
}
|
|
|
|
inline at::ScalarType PythonArgs::scalartype(int i) {
|
|
if (!args[i]) {
|
|
auto scalartype = signature.params[i].default_scalartype;
|
|
return (scalartype == at::ScalarType::Undefined) ?
|
|
torch::tensors::get_default_scalar_type() : scalartype;
|
|
}
|
|
PyObject *obj = args[i];
|
|
if (obj == (PyObject*)&PyFloat_Type) {
|
|
return at::ScalarType::Double;
|
|
}
|
|
if (obj == (PyObject*)&PyBool_Type) {
|
|
return at::ScalarType::Bool;
|
|
}
|
|
if (obj == (PyObject*)&PyLong_Type
|
|
#if PY_MAJOR_VERSION == 2
|
|
|| obj == (PyObject*)&PyInt_Type
|
|
#endif
|
|
) {
|
|
return at::ScalarType::Long;
|
|
}
|
|
return reinterpret_cast<THPDtype*>(obj)->scalar_type;
|
|
}
|
|
|
|
inline c10::optional<at::ScalarType> PythonArgs::scalartypeOptional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return scalartype(i);
|
|
}
|
|
|
|
inline const THPLayout& PythonArgs::layout(int i) {
|
|
if (!args[i]) return *signature.params[i].default_layout;
|
|
return *reinterpret_cast<THPLayout*>(args[i]);
|
|
}
|
|
|
|
inline const THPLayout& PythonArgs::layoutWithDefault(int i, const THPLayout& default_layout) {
|
|
if (!args[i]) return default_layout;
|
|
return layout(i);
|
|
}
|
|
|
|
inline at::Device PythonArgs::device(int i) {
|
|
if (!args[i]) {
|
|
return at::Device(backendToDeviceType(tensorTypeIdToBackend(torch::tensors::get_default_tensor_type_id())));
|
|
}
|
|
if (THPDevice_Check(args[i])) {
|
|
const auto device = reinterpret_cast<THPDevice*>(args[i]);
|
|
return device->device;
|
|
}
|
|
if (THPUtils_checkLong(args[i])) {
|
|
const auto device_index = THPUtils_unpackLong(args[i]);
|
|
TORCH_CHECK(device_index >= 0, "Device index must not be negative");
|
|
return at::Device(at::DeviceType::CUDA, device_index);
|
|
}
|
|
const std::string &device_str = THPUtils_unpackString(args[i]);
|
|
return at::Device(device_str);
|
|
}
|
|
|
|
inline at::Device PythonArgs::deviceWithDefault(int i, const at::Device& default_device) {
|
|
if (!args[i]) return default_device;
|
|
return device(i);
|
|
}
|
|
|
|
inline c10::optional<at::Device> PythonArgs::deviceOptional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return device(i);
|
|
}
|
|
|
|
inline at::Dimname PythonArgs::dimname(int i) {
|
|
TORCH_INTERNAL_ASSERT(args[i] != nullptr);
|
|
return THPDimname_parse(args[i]);
|
|
}
|
|
|
|
inline std::vector<at::Dimname> parseDimnameList(PyObject* arg) {
|
|
auto tuple = PyTuple_Check(arg);
|
|
auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
|
|
std::vector<at::Dimname> res;
|
|
res.reserve(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
|
|
res.push_back(THPDimname_parse(obj));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline c10::optional<std::vector<at::Dimname>> PythonArgs::toDimnameListOptional(int i) {
|
|
if (!args[i]) return c10::nullopt;
|
|
return parseDimnameList(args[i]);
|
|
}
|
|
|
|
inline std::vector<at::Dimname> PythonArgs::dimnamelist(int i) {
|
|
TORCH_INTERNAL_ASSERT(args[i]);
|
|
PyObject* arg = args[i];
|
|
auto size = signature.params[i].size;
|
|
TORCH_INTERNAL_ASSERT(size == 0 || size == 1);
|
|
if (size == 1 && THPUtils_checkDimname(arg)) {
|
|
return { THPDimname_parse(arg) };
|
|
}
|
|
return parseDimnameList(arg);
|
|
}
|
|
|
|
inline at::MemoryFormat PythonArgs::memoryformat(int i) {
|
|
if (!args[i]) return at::MemoryFormat::Contiguous;
|
|
TORCH_CHECK(THPMemoryFormat_Check(args[i]), "memory_format arg must be an instance of the torch.memory_format");
|
|
const auto memory_format = reinterpret_cast<THPMemoryFormat*>(args[i]);
|
|
return memory_format->memory_format;
|
|
}
|
|
|
|
inline c10::optional<at::MemoryFormat> PythonArgs::memoryformatOptional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return memoryformat(i);
|
|
}
|
|
|
|
inline at::QScheme PythonArgs::toQScheme(int i) {
|
|
if (!args[i]) return at::kPerTensorAffine;
|
|
TORCH_CHECK(THPQScheme_Check(args[i]), "qscheme arg must be an instance of the torch.qscheme");
|
|
const auto qscheme = reinterpret_cast<THPQScheme*>(args[i]);
|
|
return qscheme->qscheme;
|
|
}
|
|
|
|
inline std::string PythonArgs::string(int i) {
|
|
if (!args[i]) return "";
|
|
return THPUtils_unpackString(args[i]);
|
|
}
|
|
|
|
inline int64_t PythonArgs::toInt64(int i) {
|
|
if (!args[i]) return signature.params[i].default_int;
|
|
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
|
|
auto & var = THPVariable_Unpack(args[i]);
|
|
jit::tracer::ArgumentStash::stashValue(
|
|
signature.params[i].name, idx, var, jit::IntType::get());
|
|
}
|
|
return THPUtils_unpackLong(args[i]);
|
|
}
|
|
|
|
inline int64_t PythonArgs::toInt64WithDefault(int i, int64_t default_int) {
|
|
if (!args[i]) return default_int;
|
|
return toInt64(i);
|
|
}
|
|
|
|
inline c10::optional<int64_t> PythonArgs::toInt64Optional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return toInt64(i);
|
|
}
|
|
|
|
inline c10::optional<bool> PythonArgs::toBoolOptional(int i) {
|
|
if (!args[i]) {
|
|
return c10::nullopt;
|
|
}
|
|
return toBool(i);
|
|
}
|
|
|
|
inline double PythonArgs::toDouble(int i) {
|
|
if (!args[i]) return signature.params[i].default_double;
|
|
return THPUtils_unpackDouble(args[i]);
|
|
}
|
|
|
|
inline double PythonArgs::toDoubleWithDefault(int i, double default_double) {
|
|
if (!args[i]) return default_double;
|
|
return toDouble(i);
|
|
}
|
|
|
|
inline std::complex<double> PythonArgs::toComplex(int i) {
|
|
std::complex<double> default_value = *const_cast<std::complex<double> *>(
|
|
reinterpret_cast<const std::complex<double> *>(signature.params[i].default_complex));
|
|
if (!args[i]) return default_value;
|
|
return THPUtils_unpackComplexDouble(args[i]);
|
|
}
|
|
|
|
inline std::complex<double> PythonArgs::toComplexWithDefault(int i, std::complex<double> default_value) {
|
|
if (!args[i]) return default_value;
|
|
return toDouble(i);
|
|
}
|
|
|
|
inline bool PythonArgs::toBool(int i) {
|
|
if (!args[i]) return signature.params[i].default_bool;
|
|
return args[i] == Py_True;
|
|
}
|
|
|
|
inline bool PythonArgs::toBoolWithDefault(int i, bool default_bool) {
|
|
if (!args[i]) return default_bool;
|
|
return toBool(i);
|
|
}
|
|
|
|
inline bool PythonArgs::isNone(int i) {
|
|
return args[i] == nullptr;
|
|
}
|
|
|
|
inline at::Generator* PythonArgs::generator(int i) {
|
|
if (!args[i]) return nullptr;
|
|
return reinterpret_cast<THPGenerator*>(args[i])->cdata;
|
|
}
|
|
|
|
inline at::Storage PythonArgs::storage(int i) {
|
|
if (!args[i]) return at::Storage();
|
|
return createStorage(args[i]);
|
|
}
|
|
|
|
inline PyObject* PythonArgs::pyobject(int i) {
|
|
if (!args[i]) return Py_None;
|
|
return args[i];
|
|
}
|
|
|
|
/*
|
|
* Reference: https://github.com/numpy/numpy/blob/f4c497c768e0646df740b647782df463825bfd27/numpy/core/src/common/get_attr_string.h#L42
|
|
*
|
|
* Stripped down version of PyObject_GetAttrString,
|
|
* avoids lookups for None, tuple, and List objects,
|
|
* and doesn't create a PyErr since this code ignores it.
|
|
*
|
|
* This can be much faster then PyObject_GetAttrString where
|
|
* exceptions are not used by caller.
|
|
*
|
|
* 'obj' is the object to search for attribute.
|
|
*
|
|
* 'name' is the attribute to search for.
|
|
*
|
|
* Returns a py::object wrapping the return value. If the attribute lookup failed
|
|
* the value will be NULL.
|
|
*
|
|
*/
|
|
|
|
static py::object PyObject_FastGetAttrString(PyObject *obj, char *name)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
PyObject *res = (PyObject *)NULL;
|
|
|
|
/* Attribute referenced by (char *)name */
|
|
if (tp->tp_getattr != NULL) {
|
|
res = (*tp->tp_getattr)(obj, name);
|
|
if (res == NULL) {
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
/* Attribute referenced by (PyObject *)name */
|
|
else if (tp->tp_getattro != NULL) {
|
|
PyObject *w = THPUtils_internString(name);
|
|
if (w == NULL) {
|
|
return py::object();
|
|
}
|
|
res = (*tp->tp_getattro)(obj, w);
|
|
Py_DECREF(w);
|
|
if (res == NULL) {
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
return py::reinterpret_steal<py::object>(res);
|
|
}
|
|
|
|
// Makes sure that we don't check for __torch_function__ on basic Python types
|
|
static bool _is_basic_python_type(PyTypeObject *tp)
|
|
{
|
|
return (
|
|
/* Basic number types */
|
|
tp == &PyBool_Type ||
|
|
|
|
tp == &PyLong_Type ||
|
|
tp == &PyFloat_Type ||
|
|
tp == &PyComplex_Type ||
|
|
|
|
/* Basic sequence types */
|
|
tp == &PyList_Type ||
|
|
tp == &PyTuple_Type ||
|
|
tp == &PyDict_Type ||
|
|
tp == &PySet_Type ||
|
|
tp == &PyFrozenSet_Type ||
|
|
tp == &PyUnicode_Type ||
|
|
tp == &PyBytes_Type ||
|
|
|
|
#if PY_MAJOR_VERSION == 2
|
|
tp == &PyString_Type ||
|
|
#endif
|
|
|
|
/* other builtins */
|
|
tp == &PySlice_Type ||
|
|
tp == Py_TYPE(Py_None) ||
|
|
tp == Py_TYPE(Py_Ellipsis) ||
|
|
tp == Py_TYPE(Py_NotImplemented) ||
|
|
|
|
PyModule_Check(tp) ||
|
|
/* sentinel to swallow trailing || */
|
|
false
|
|
);
|
|
}
|
|
|
|
/*
|
|
* Lookup a special method, following the python approach of looking up
|
|
* on the type object, rather than on the instance itself.
|
|
*
|
|
* Assumes that the special method is a torch-specific one, so does not
|
|
* look at builtin types, nor does it look at a base Tensor.
|
|
*
|
|
* If no special method is found, return NULL, otherwise returns a new
|
|
* reference to the function object
|
|
*
|
|
* In future, could be made more like _Py_LookupSpecial
|
|
*/
|
|
|
|
static py::object PyTorch_LookupSpecial(PyObject *obj, char* name)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
if (THPVariable_CheckExact(obj)) {
|
|
return py::object();
|
|
}
|
|
if (_is_basic_python_type(tp)) {
|
|
return py::object();
|
|
}
|
|
if(PyObject_HasAttrString(obj, name) == 0){
|
|
return py::object();
|
|
}
|
|
return PyObject_FastGetAttrString((PyObject *)tp, name);
|
|
}
|
|
|
|
/*
|
|
* Checks if obj has a __torch_function__ implementation
|
|
*
|
|
* Returns true if an implementation is found and false otherwise
|
|
*
|
|
*/
|
|
static auto check_has_torch_function(PyObject* obj) -> bool
|
|
{
|
|
py::object method = PyTorch_LookupSpecial(obj, "__torch_function__");
|
|
if(method.ptr() != nullptr){
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace torch
|