pytorch/torch/csrc/utils/python_arg_parser.h
Richard Zou e05ee4c421 Remove BUILD_NAMEDTENSOR macros (#30894)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30894

This PR begins the process of removing BUILD_NAMEDTENSOR macros. There
will be followups.

Reasons for removing the macros:
- BUILD_NAMEDTENSOR is always on and has been on since pytorch 1.3.0.
- Since we don't test building without it, it is useless to keep around.
- Code becomes nicer to read without the macros

Reasons for not removing the macros:
- potential for feature flagging

Now, I argue against needing to feature flag. The main reason why we
might want to feature flag is if we need to disable the feature.
We'd need a fast switch to disable the feature if someone discovers
in the future that named tensors caused some regression in some existing workflows.

In https://github.com/pytorch/pytorch/pull/25798, I did a variety of
macro- and micro- benchmarks to determine the performance impact of named
tensors on regular tensors.

[The
microbenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-529014810)
were not very stable, and running the
microbenchmarks for more iterations doesn't actually help because the
noise is not distributed in a nice way. Instead of microbenchmarks I ran
a [profiler
(perf)](https://github.com/pytorch/pytorch/pull/25798#issuecomment-555707645)
to estimate how much overhead named tensors add to unnamed code. I
estimated the overhead to be less than 100ns for `add` and even smaller
for `mm`; there are ways to optimize even futher if we find this to be a
problem.

[Initial
macrobenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-530539104)
were also not very stable. I ran imagenet for some number of epochs. To
make them more stable, I got rid of the data loading (which seemed to
vary between runs). [In some benchmarkers without data
loading](https://github.com/pytorch/pytorch/pull/25798#issuecomment-562214053),
we can see that the results are less noisy now. These results support
no noticeable regressions in speed.

Test Plan: - wait for CI

Differential Revision: D18858543

Pulled By: zou3519

fbshipit-source-id: 08bf3853a9f506c6b084808dc9ddd1e835f48c13
2019-12-10 07:54:05 -08:00

668 lines
21 KiB
C++

#pragma once
// Parse arguments to Python functions implemented in C++
// This is similar to PyArg_ParseTupleAndKeywords(), but specifically handles
// the types relevant to PyTorch and distinguishes between overloaded function
// signatures.
//
// Example:
//
// static PythonArgParser parser({
// "norm(Scalar p, int64_t dim, bool keepdim=False)",
// "norm(Scalar p=2)",
// });
// ParsedArgs<3> parsed_args;
// auto r = parser.parse(args, kwargs, parsed_args);
// if (r.idx == 0) {
// norm(r.scalar(0), r.int64(1), r.bool(0));
// } else {
// norm(r.scalar(0));
// }
//
// We auto-generate most uses of PythonArgParser; the generated files
// are torch/csrc/autograd/generated/python_*.cpp
//
// Some gotchas that you should watch out for:
//
// - Note [Order of overloads matters]
// Order of overloads matters. A set of input arguments may
// bind to multiple argument specs; we will always pick the
// first one in PythonArgParser. However, when you are writing
// overloads in, e.g., native_functions.yaml, you don't have to
// worry about what order you write them, because the code
// generation logic always gives the overloads a canonical
// order, where Tensor overloads come first, before Scalar overloads.
// This logic is in sort_declarations in
// tools/autograd/gen_python_functions.py
//
// - Zero-dim tensors (e.g., torch.tensor(2)) bind to both
// Scalar and Tensor, UNLESS they require grad (in which case
// they only bind to Tensor).
#include <torch/csrc/python_headers.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/jit/tracer.h>
#include <torch/csrc/jit/ir.h>
#include <ATen/core/EnableNamedTensor.h>
#include <torch/csrc/python_dimname.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <torch/csrc/utils/numpy_stub.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/six.h>
#include <torch/csrc/autograd/variable.h>
#include <ATen/ATen.h>
#include <c10/util/Exception.h>
#include <array>
#include <cstddef>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
namespace torch {
enum class ParameterType {
TENSOR, SCALAR, INT64, DOUBLE, COMPLEX, TENSOR_LIST, INT_LIST, GENERATOR,
BOOL, STORAGE, PYOBJECT, SCALARTYPE, LAYOUT, MEMORY_FORMAT, DEVICE, STRING,
DIMNAME, DIMNAME_LIST, QSCHEME
};
struct FunctionParameter;
struct FunctionSignature;
struct PythonArgs;
// Contains bound Python arguments in declaration order
template<int N>
struct ParsedArgs {
ParsedArgs() : args() { }
PyObject* args[N];
};
struct PythonArgParser {
explicit PythonArgParser(std::vector<std::string> fmts, bool traceable=false);
// meant only for `torch` functions.
template<int N>
inline PythonArgs parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst);
private:
[[noreturn]]
void print_error(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]);
PythonArgs raw_parse(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]);
std::vector<FunctionSignature> signatures_;
std::string function_name;
ssize_t max_args;
bool traceable;
};
struct PythonArgs {
PythonArgs(int idx, bool traceable, const FunctionSignature& signature, PyObject** args)
: idx(idx)
, traceable(traceable)
, signature(signature)
, args(args) {}
int idx;
bool traceable;
const FunctionSignature& signature;
PyObject** args;
inline bool has_torch_function();
inline std::string get_func_name();
inline at::Tensor tensor(int i);
inline at::Scalar scalar(int i);
inline at::Scalar scalarWithDefault(int i, at::Scalar default_scalar);
inline std::vector<at::Tensor> tensorlist(int i);
template<int N>
inline std::array<at::Tensor, N> tensorlist_n(int i);
inline std::vector<int64_t> intlist(int i);
inline std::vector<int64_t> intlistWithDefault(int i, std::vector<int64_t> default_intlist);
inline at::Generator* generator(int i);
inline at::Storage storage(int i);
inline at::ScalarType scalartype(int i);
inline at::ScalarType scalartypeWithDefault(int i, at::ScalarType default_scalartype);
inline c10::optional<at::ScalarType> scalartypeOptional(int i);
inline c10::optional<at::Scalar> scalarOptional(int i);
inline c10::optional<int64_t> toInt64Optional(int i);
inline c10::optional<bool> toBoolOptional(int i);
inline const THPLayout& layout(int i);
inline const THPLayout& layoutWithDefault(int i, const THPLayout& default_layout);
inline at::Device device(int i);
inline at::Device deviceWithDefault(int i, const at::Device& default_device);
inline c10::optional<at::Device> deviceOptional(int i);
inline at::Dimname dimname(int i);
inline std::vector<at::Dimname> dimnamelist(int i);
inline c10::optional<std::vector<at::Dimname>> toDimnameListOptional(int i);
inline at::MemoryFormat memoryformat(int i);
inline c10::optional<at::MemoryFormat> memoryformatOptional(int i);
inline at::QScheme toQScheme(int i);
inline std::string string(int i);
inline PyObject* pyobject(int i);
inline int64_t toInt64(int i);
inline int64_t toInt64WithDefault(int i, int64_t default_int);
inline double toDouble(int i);
inline double toDoubleWithDefault(int i, double default_double);
inline std::complex<double> toComplex(int i);
inline std::complex<double> toComplexWithDefault(int i, std::complex<double> default_complex);
inline bool toBool(int i);
inline bool toBoolWithDefault(int i, bool default_bool);
inline bool isNone(int i);
private:
at::Tensor tensor_slow(int i);
at::Scalar scalar_slow(int i);
};
struct PYBIND11_EXPORT FunctionSignature {
explicit FunctionSignature(const std::string& fmt);
bool parse(PyObject* args, PyObject* kwargs, PyObject* dst[], bool raise_exception);
std::string toString() const;
std::string name;
std::vector<FunctionParameter> params;
std::vector<py::handle> overloaded_args;
ssize_t min_args;
ssize_t max_args;
ssize_t max_pos_args;
bool hidden;
bool deprecated;
};
struct FunctionParameter {
FunctionParameter(const std::string& fmt, bool keyword_only);
bool check(PyObject* obj, std::vector<py::handle> &overloaded_args);
void set_default_str(const std::string& str);
std::string type_name() const;
ParameterType type_;
bool optional;
bool allow_none;
bool keyword_only;
bool allow_numbers_as_tensors = false;
int size;
std::string name;
// having this as a raw PyObject * will presumably leak it, but these are only held by static objects
// anyway, and Py_Finalize can already be called when this is destructed.
PyObject *python_name;
at::SmallVector<PyObject *, 5> numpy_python_names;
at::Scalar default_scalar;
std::vector<int64_t> default_intlist;
union {
bool default_bool;
int64_t default_int;
double default_double;
double default_complex[2]; // see Scalar
at::ScalarType default_scalartype;
THPLayout* default_layout;
};
};
template<int N>
inline PythonArgs PythonArgParser::parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst) {
if (N < max_args) {
throw ValueError("PythonArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)",
(int)max_args, N);
}
return raw_parse(args, kwargs, dst.args);
}
inline bool PythonArgs::has_torch_function(){
return !this->signature.overloaded_args.empty();
}
inline std::string PythonArgs::get_func_name(){
return signature.name;
}
inline at::Tensor PythonArgs::tensor(int i) {
if (args[i] && THPVariable_CheckExact(args[i])) {
return reinterpret_cast<THPVariable*>(args[i])->cdata;
}
return tensor_slow(i);
}
inline at::Scalar PythonArgs::scalar(int i) {
if (!args[i]) return signature.params[i].default_scalar;
return scalar_slow(i);
}
inline at::Scalar PythonArgs::scalarWithDefault(int i, at::Scalar default_scalar) {
if (!args[i]) return default_scalar;
return scalar_slow(i);
}
inline c10::optional<at::Scalar> PythonArgs::scalarOptional(int i) {
if (!args[i]) return c10::nullopt;
return scalar_slow(i);
}
inline std::vector<at::Tensor> PythonArgs::tensorlist(int i) {
if (!args[i]) return std::vector<at::Tensor>();
auto tuple = six::isTuple(args[i]);
THPObjectPtr arg = six::maybeAsTuple(args[i]);
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
std::vector<at::Tensor> res(size);
for (int idx = 0; idx < size; idx++) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx);
if (!THPVariable_Check(obj)) {
throw TypeError("expected Tensor as element %d in argument %d, but got %s",
idx, i, Py_TYPE(obj)->tp_name);
}
res[idx] = reinterpret_cast<THPVariable*>(obj)->cdata;
}
return res;
}
template<int N>
inline std::array<at::Tensor, N> PythonArgs::tensorlist_n(int i) {
auto res = std::array<at::Tensor, N>();
if (!args[i]) return res;
auto tuple = six::isTuple(args[i]);
THPObjectPtr arg = six::maybeAsTuple(args[i]);
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
if (size != N) {
throw TypeError("expected tuple of %d elements but got %d", N, (int)size);
}
for (int idx = 0; idx < size; idx++) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx);
if (!THPVariable_Check(obj)) {
throw TypeError("expected Tensor as element %d in argument %d, but got %s",
idx, i, Py_TYPE(obj)->tp_name);
}
res[idx] = reinterpret_cast<THPVariable*>(obj)->cdata;
}
return res;
}
inline std::vector<int64_t> PythonArgs::intlist(int i) {
return intlistWithDefault(i, signature.params[i].default_intlist);
}
inline std::vector<int64_t> PythonArgs::intlistWithDefault(int i, std::vector<int64_t> default_intlist) {
if (!args[i]) return default_intlist;
PyObject* arg = args[i];
auto size = signature.params[i].size;
if (size > 0 && THPUtils_checkLong(arg)) {
return std::vector<int64_t>(size, THPUtils_unpackIndex(arg));
}
auto tuple = PyTuple_Check(arg);
size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
std::vector<int64_t> res(size);
for (int idx = 0; idx < size; idx++) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
try {
// Elements of torch.Size are tensors during tracing, and we need to record extra
// information before they are turned into an IntArrayRef
if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) {
auto & var = THPVariable_Unpack(obj);
jit::tracer::ArgumentStash::stashIntArrayRefElem(
signature.params[i].name, size, idx, var);
res[idx] = var.item<int64_t>();
continue;
} else {
res[idx] = THPUtils_unpackIndex(obj);
}
} catch (const std::exception &e) {
throw TypeError("%s(): argument '%s' must be %s, but found element of type %s at pos %d",
signature.name.c_str(), signature.params[i].name.c_str(),
signature.params[i].type_name().c_str(), Py_TYPE(obj)->tp_name, idx + 1);
}
}
return res;
}
inline at::ScalarType PythonArgs::scalartypeWithDefault(int i, at::ScalarType default_scalartype) {
if (!args[i]) return default_scalartype;
return scalartype(i);
}
inline at::ScalarType PythonArgs::scalartype(int i) {
if (!args[i]) {
auto scalartype = signature.params[i].default_scalartype;
return (scalartype == at::ScalarType::Undefined) ?
torch::tensors::get_default_scalar_type() : scalartype;
}
PyObject *obj = args[i];
if (obj == (PyObject*)&PyFloat_Type) {
return at::ScalarType::Double;
}
if (obj == (PyObject*)&PyBool_Type) {
return at::ScalarType::Bool;
}
if (obj == (PyObject*)&PyLong_Type
#if PY_MAJOR_VERSION == 2
|| obj == (PyObject*)&PyInt_Type
#endif
) {
return at::ScalarType::Long;
}
return reinterpret_cast<THPDtype*>(obj)->scalar_type;
}
inline c10::optional<at::ScalarType> PythonArgs::scalartypeOptional(int i) {
if (!args[i])
return c10::nullopt;
return scalartype(i);
}
inline const THPLayout& PythonArgs::layout(int i) {
if (!args[i]) return *signature.params[i].default_layout;
return *reinterpret_cast<THPLayout*>(args[i]);
}
inline const THPLayout& PythonArgs::layoutWithDefault(int i, const THPLayout& default_layout) {
if (!args[i]) return default_layout;
return layout(i);
}
inline at::Device PythonArgs::device(int i) {
if (!args[i]) {
return at::Device(backendToDeviceType(tensorTypeIdToBackend(torch::tensors::get_default_tensor_type_id())));
}
if (THPDevice_Check(args[i])) {
const auto device = reinterpret_cast<THPDevice*>(args[i]);
return device->device;
}
if (THPUtils_checkLong(args[i])) {
const auto device_index = THPUtils_unpackLong(args[i]);
TORCH_CHECK(device_index >= 0, "Device index must not be negative");
return at::Device(at::DeviceType::CUDA, device_index);
}
const std::string &device_str = THPUtils_unpackString(args[i]);
return at::Device(device_str);
}
inline at::Device PythonArgs::deviceWithDefault(int i, const at::Device& default_device) {
if (!args[i]) return default_device;
return device(i);
}
inline c10::optional<at::Device> PythonArgs::deviceOptional(int i) {
if (!args[i])
return c10::nullopt;
return device(i);
}
inline at::Dimname PythonArgs::dimname(int i) {
TORCH_INTERNAL_ASSERT(args[i] != nullptr);
return THPDimname_parse(args[i]);
}
inline std::vector<at::Dimname> parseDimnameList(PyObject* arg) {
auto tuple = PyTuple_Check(arg);
auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
std::vector<at::Dimname> res;
res.reserve(size);
for (int idx = 0; idx < size; idx++) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
res.push_back(THPDimname_parse(obj));
}
return res;
}
inline c10::optional<std::vector<at::Dimname>> PythonArgs::toDimnameListOptional(int i) {
if (!args[i]) return c10::nullopt;
return parseDimnameList(args[i]);
}
inline std::vector<at::Dimname> PythonArgs::dimnamelist(int i) {
TORCH_INTERNAL_ASSERT(args[i]);
PyObject* arg = args[i];
auto size = signature.params[i].size;
TORCH_INTERNAL_ASSERT(size == 0 || size == 1);
if (size == 1 && THPUtils_checkDimname(arg)) {
return { THPDimname_parse(arg) };
}
return parseDimnameList(arg);
}
inline at::MemoryFormat PythonArgs::memoryformat(int i) {
if (!args[i]) return at::MemoryFormat::Contiguous;
TORCH_CHECK(THPMemoryFormat_Check(args[i]), "memory_format arg must be an instance of the torch.memory_format");
const auto memory_format = reinterpret_cast<THPMemoryFormat*>(args[i]);
return memory_format->memory_format;
}
inline c10::optional<at::MemoryFormat> PythonArgs::memoryformatOptional(int i) {
if (!args[i])
return c10::nullopt;
return memoryformat(i);
}
inline at::QScheme PythonArgs::toQScheme(int i) {
if (!args[i]) return at::kPerTensorAffine;
TORCH_CHECK(THPQScheme_Check(args[i]), "qscheme arg must be an instance of the torch.qscheme");
const auto qscheme = reinterpret_cast<THPQScheme*>(args[i]);
return qscheme->qscheme;
}
inline std::string PythonArgs::string(int i) {
if (!args[i]) return "";
return THPUtils_unpackString(args[i]);
}
inline int64_t PythonArgs::toInt64(int i) {
if (!args[i]) return signature.params[i].default_int;
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
auto & var = THPVariable_Unpack(args[i]);
jit::tracer::ArgumentStash::stashValue(
signature.params[i].name, idx, var, jit::IntType::get());
}
return THPUtils_unpackLong(args[i]);
}
inline int64_t PythonArgs::toInt64WithDefault(int i, int64_t default_int) {
if (!args[i]) return default_int;
return toInt64(i);
}
inline c10::optional<int64_t> PythonArgs::toInt64Optional(int i) {
if (!args[i])
return c10::nullopt;
return toInt64(i);
}
inline c10::optional<bool> PythonArgs::toBoolOptional(int i) {
if (!args[i]) {
return c10::nullopt;
}
return toBool(i);
}
inline double PythonArgs::toDouble(int i) {
if (!args[i]) return signature.params[i].default_double;
return THPUtils_unpackDouble(args[i]);
}
inline double PythonArgs::toDoubleWithDefault(int i, double default_double) {
if (!args[i]) return default_double;
return toDouble(i);
}
inline std::complex<double> PythonArgs::toComplex(int i) {
std::complex<double> default_value = *const_cast<std::complex<double> *>(
reinterpret_cast<const std::complex<double> *>(signature.params[i].default_complex));
if (!args[i]) return default_value;
return THPUtils_unpackComplexDouble(args[i]);
}
inline std::complex<double> PythonArgs::toComplexWithDefault(int i, std::complex<double> default_value) {
if (!args[i]) return default_value;
return toDouble(i);
}
inline bool PythonArgs::toBool(int i) {
if (!args[i]) return signature.params[i].default_bool;
return args[i] == Py_True;
}
inline bool PythonArgs::toBoolWithDefault(int i, bool default_bool) {
if (!args[i]) return default_bool;
return toBool(i);
}
inline bool PythonArgs::isNone(int i) {
return args[i] == nullptr;
}
inline at::Generator* PythonArgs::generator(int i) {
if (!args[i]) return nullptr;
return reinterpret_cast<THPGenerator*>(args[i])->cdata;
}
inline at::Storage PythonArgs::storage(int i) {
if (!args[i]) return at::Storage();
return createStorage(args[i]);
}
inline PyObject* PythonArgs::pyobject(int i) {
if (!args[i]) return Py_None;
return args[i];
}
/*
* Reference: https://github.com/numpy/numpy/blob/f4c497c768e0646df740b647782df463825bfd27/numpy/core/src/common/get_attr_string.h#L42
*
* Stripped down version of PyObject_GetAttrString,
* avoids lookups for None, tuple, and List objects,
* and doesn't create a PyErr since this code ignores it.
*
* This can be much faster then PyObject_GetAttrString where
* exceptions are not used by caller.
*
* 'obj' is the object to search for attribute.
*
* 'name' is the attribute to search for.
*
* Returns a py::object wrapping the return value. If the attribute lookup failed
* the value will be NULL.
*
*/
static py::object PyObject_FastGetAttrString(PyObject *obj, char *name)
{
PyTypeObject *tp = Py_TYPE(obj);
PyObject *res = (PyObject *)NULL;
/* Attribute referenced by (char *)name */
if (tp->tp_getattr != NULL) {
res = (*tp->tp_getattr)(obj, name);
if (res == NULL) {
PyErr_Clear();
}
}
/* Attribute referenced by (PyObject *)name */
else if (tp->tp_getattro != NULL) {
PyObject *w = THPUtils_internString(name);
if (w == NULL) {
return py::object();
}
res = (*tp->tp_getattro)(obj, w);
Py_DECREF(w);
if (res == NULL) {
PyErr_Clear();
}
}
return py::reinterpret_steal<py::object>(res);
}
// Makes sure that we don't check for __torch_function__ on basic Python types
static bool _is_basic_python_type(PyTypeObject *tp)
{
return (
/* Basic number types */
tp == &PyBool_Type ||
tp == &PyLong_Type ||
tp == &PyFloat_Type ||
tp == &PyComplex_Type ||
/* Basic sequence types */
tp == &PyList_Type ||
tp == &PyTuple_Type ||
tp == &PyDict_Type ||
tp == &PySet_Type ||
tp == &PyFrozenSet_Type ||
tp == &PyUnicode_Type ||
tp == &PyBytes_Type ||
#if PY_MAJOR_VERSION == 2
tp == &PyString_Type ||
#endif
/* other builtins */
tp == &PySlice_Type ||
tp == Py_TYPE(Py_None) ||
tp == Py_TYPE(Py_Ellipsis) ||
tp == Py_TYPE(Py_NotImplemented) ||
PyModule_Check(tp) ||
/* sentinel to swallow trailing || */
false
);
}
/*
* Lookup a special method, following the python approach of looking up
* on the type object, rather than on the instance itself.
*
* Assumes that the special method is a torch-specific one, so does not
* look at builtin types, nor does it look at a base Tensor.
*
* If no special method is found, return NULL, otherwise returns a new
* reference to the function object
*
* In future, could be made more like _Py_LookupSpecial
*/
static py::object PyTorch_LookupSpecial(PyObject *obj, char* name)
{
PyTypeObject *tp = Py_TYPE(obj);
if (THPVariable_CheckExact(obj)) {
return py::object();
}
if (_is_basic_python_type(tp)) {
return py::object();
}
if(PyObject_HasAttrString(obj, name) == 0){
return py::object();
}
return PyObject_FastGetAttrString((PyObject *)tp, name);
}
/*
* Checks if obj has a __torch_function__ implementation
*
* Returns true if an implementation is found and false otherwise
*
*/
static auto check_has_torch_function(PyObject* obj) -> bool
{
py::object method = PyTorch_LookupSpecial(obj, "__torch_function__");
if(method.ptr() != nullptr){
return true;
}
return false;
}
} // namespace torch