mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
52 lines
1.9 KiB
Python
52 lines
1.9 KiB
Python
import math
|
|
from .optimizer import Optimizer
|
|
|
|
class Adam(Optimizer):
|
|
|
|
def __init__(self, params, lr=1e-2, betas=(0.9, 0.999), epsilon=1e-8,
|
|
weight_decay=0):
|
|
defaults = dict(lr=lr, betas=betas, epsilon=epsilon,
|
|
weight_decay=weight_decay)
|
|
super(Adam, self).__init__(params, defaults)
|
|
|
|
def step(self, forward_closure=None):
|
|
loss = None
|
|
if forward_closure is not None:
|
|
loss = self._forward_backward(forward_closure)
|
|
|
|
for group in self.param_groups:
|
|
for p in group['params']:
|
|
grad = p.grad
|
|
state = self.state[id(p)]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = 0
|
|
# Exponential moving average of gradient values
|
|
state['exp_avg'] = grad.new().resize_as_(grad).zero_()
|
|
# Exponential moving average of squared gradient values
|
|
state['exp_avg_sq'] = grad.new().resize_as_(grad).zero_()
|
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
|
beta1, beta2 = group['betas']
|
|
|
|
state['step'] += 1
|
|
|
|
if group['weight_decay'] != 0:
|
|
grad = grad.add(group['weight_decay'], p.data)
|
|
|
|
# Decay the first and second moment running average coefficient
|
|
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
|
|
|
denom = exp_avg_sq.sqrt().add_(group['epsilon'])
|
|
|
|
bias_correction1 = 1 - beta1 ** state['step']
|
|
bias_correction2 = 1 - beta2 ** state['step']
|
|
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
|
|
|
|
p.data.addcdiv_(-step_size, exp_avg, denom)
|
|
|
|
return loss
|
|
|