mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This PR renames every cache_limit to recompile_limit via sed. Old config options are maintained via Config(alias='xyz') Pull Request resolved: https://github.com/pytorch/pytorch/pull/143709 Approved by: https://github.com/jansel
482 lines
17 KiB
Python
482 lines
17 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
import torch._dynamo.test_case
|
|
import torch._dynamo.testing
|
|
|
|
|
|
class RecompileTests(torch._dynamo.test_case.TestCase):
|
|
def test_automatic_dynamic_reduce_recompiles(self):
|
|
# Test the counterfactual, lots of recompiles without this config
|
|
def foo(x, y):
|
|
return x * y
|
|
|
|
def run_foo_6_times_and_count_recompiles(dynamic=None):
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
x = torch.randn([2])
|
|
y = torch.randn([2])
|
|
opt = torch.compile(foo, backend=cnt, dynamic=dynamic)
|
|
opt(x, y)
|
|
x = torch.randn([3])
|
|
y = torch.randn([3])
|
|
opt(x, y)
|
|
x = torch.randn([4])
|
|
y = torch.randn([4])
|
|
opt(x, y)
|
|
opt(x, y)
|
|
x = torch.randn([5])
|
|
y = torch.randn([5])
|
|
opt(x, y)
|
|
opt(x, y)
|
|
x = torch.randn([6])
|
|
y = torch.randn([6])
|
|
opt(x, y)
|
|
|
|
return cnt
|
|
|
|
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", False)
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def run_without_automatic():
|
|
return run_foo_6_times_and_count_recompiles()
|
|
|
|
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", True)
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def run_with_automatic():
|
|
return run_foo_6_times_and_count_recompiles()
|
|
|
|
without = run_without_automatic()
|
|
self.assertEqual(without.frame_count, 5)
|
|
self.assertEqual(without.op_count, 5)
|
|
torch._dynamo.reset()
|
|
without = run_foo_6_times_and_count_recompiles(dynamic=False)
|
|
self.assertEqual(without.frame_count, 5)
|
|
self.assertEqual(without.op_count, 5)
|
|
torch._dynamo.reset()
|
|
with_automatic = run_with_automatic()
|
|
self.assertEqual(with_automatic.frame_count, 2)
|
|
self.assertEqual(with_automatic.op_count, 2)
|
|
torch._dynamo.reset()
|
|
with_automatic = run_foo_6_times_and_count_recompiles(dynamic=None)
|
|
self.assertEqual(with_automatic.frame_count, 2)
|
|
self.assertEqual(with_automatic.op_count, 2)
|
|
torch._dynamo.reset()
|
|
with_dynamic = run_foo_6_times_and_count_recompiles(dynamic=True)
|
|
self.assertEqual(with_dynamic.frame_count, 1)
|
|
self.assertEqual(with_dynamic.op_count, 1)
|
|
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def test_recompiles_true_false_flop(self):
|
|
# Test the counterfactual, lots of recompiles without this config
|
|
def foo(x, y):
|
|
if x:
|
|
return y * 2
|
|
else:
|
|
return y * y
|
|
|
|
def run_foo_6_times_and_count_recompiles():
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
opt = torch.compile(foo, backend=cnt, fullgraph=True)
|
|
|
|
x = True
|
|
y = torch.randn([2])
|
|
opt(x, y)
|
|
x = False
|
|
y = torch.randn([2])
|
|
opt(x, y)
|
|
x = True
|
|
y = torch.randn([3])
|
|
opt(x, y)
|
|
x = True
|
|
y = torch.randn([4])
|
|
opt(x, y)
|
|
x = True
|
|
y = torch.randn([5])
|
|
opt(x, y)
|
|
|
|
return cnt
|
|
|
|
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", False)
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def run_without_automatic():
|
|
return run_foo_6_times_and_count_recompiles()
|
|
|
|
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", True)
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def run_with_automatic():
|
|
return run_foo_6_times_and_count_recompiles()
|
|
|
|
without = run_without_automatic()
|
|
self.assertEqual(without.frame_count, 5)
|
|
self.assertEqual(without.op_count, 5)
|
|
torch._dynamo.reset()
|
|
with_automatic = run_with_automatic()
|
|
self.assertEqual(with_automatic.frame_count, 3)
|
|
self.assertEqual(with_automatic.op_count, 3)
|
|
|
|
def test_automatic_dynamic_tensor_scalar_change(self):
|
|
# Test the counterfactual, lots of recompiles without this config
|
|
def foo(x, y):
|
|
return x * y
|
|
|
|
def run_foo_6_times_and_count_recompiles_swap_types():
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
x = torch.randn([2])
|
|
y = torch.randn([2])
|
|
opt = torch.compile(foo, backend=cnt)
|
|
opt(x, y)
|
|
x = torch.randn([3])
|
|
y = 3
|
|
opt(x, y)
|
|
x = torch.randn([4])
|
|
y = torch.randn([4])
|
|
opt(x, y)
|
|
opt(x, y)
|
|
x = torch.randn([5])
|
|
y = 4
|
|
opt(x, y)
|
|
opt(x, y)
|
|
x = torch.randn([6])
|
|
y = torch.randn([6])
|
|
opt(x, y)
|
|
|
|
return cnt
|
|
|
|
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", False)
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def run_without_automatic():
|
|
return run_foo_6_times_and_count_recompiles_swap_types()
|
|
|
|
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", True)
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def run_with_automatic():
|
|
return run_foo_6_times_and_count_recompiles_swap_types()
|
|
|
|
without = run_without_automatic()
|
|
self.assertEqual(without.frame_count, 5)
|
|
self.assertEqual(without.op_count, 5)
|
|
torch._dynamo.reset()
|
|
with_automatic = run_with_automatic()
|
|
self.assertEqual(with_automatic.frame_count, 3)
|
|
self.assertEqual(with_automatic.op_count, 3)
|
|
|
|
def test_aliasing_guard_failures(self):
|
|
def foo(a, b, c):
|
|
a.add_(b)
|
|
return c + 1
|
|
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
compiled_foo = torch.compile(foo, backend=cnt, fullgraph=True)
|
|
|
|
x = torch.randn([3])
|
|
y = torch.randn([3])
|
|
z = torch.randn([3])
|
|
cmp_result = compiled_foo(
|
|
x.detach().clone(), y.detach().clone(), z.detach().clone()
|
|
)
|
|
eager_result = foo(x.detach().clone(), y.detach().clone(), z.detach().clone())
|
|
self.assertEqual(cmp_result, eager_result)
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
cmp_result = compiled_foo(
|
|
z.detach().clone(), y.detach().clone(), x.detach().clone()
|
|
)
|
|
eager_result = foo(z.detach().clone(), y.detach().clone(), x.detach().clone())
|
|
self.assertEqual(cmp_result, eager_result)
|
|
# No recompile, alias preserved
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
x_clone = x.detach().clone()
|
|
cmp_result = compiled_foo(x_clone, y.detach().clone(), x_clone)
|
|
x_clone = x.detach().clone()
|
|
eager_result = compiled_foo(x_clone, y.detach().clone(), x_clone)
|
|
self.assertEqual(cmp_result, eager_result)
|
|
# Recompile, alias changed
|
|
self.assertEqual(cnt.frame_count, 2)
|
|
|
|
def test_aliasing_guard_failures_with_globals(self):
|
|
g1 = torch.randn([3])
|
|
g2 = torch.randn([3])
|
|
|
|
def foo(a):
|
|
a.add_(g1)
|
|
return g2 + 1
|
|
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
compiled_foo = torch.compile(foo, backend=cnt, fullgraph=True)
|
|
|
|
z = torch.randn([3])
|
|
cmp_result = compiled_foo(z.detach().clone())
|
|
eager_result = foo(z.detach().clone())
|
|
self.assertEqual(cmp_result, eager_result)
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
g1 = g1.detach().clone()
|
|
cmp_result = compiled_foo(g1)
|
|
g1 = g1.detach().clone()
|
|
eager_result = compiled_foo(g1)
|
|
self.assertEqual(cmp_result, eager_result)
|
|
# Recompile, alias changed
|
|
self.assertEqual(cnt.frame_count, 2)
|
|
|
|
def test_dynamic_shape_parameter_recompile(self):
|
|
# Test the matrix multiplication with Parameters.
|
|
# Without the config assume_parameters_shapes_static_by_default,
|
|
# the torch.nn.Parameter shapes are assumed to be static which leads to recompilation
|
|
|
|
w = torch.nn.Parameter(torch.randn(3, 2))
|
|
|
|
def foo(x):
|
|
return x @ w
|
|
|
|
def run_foo_6_times_and_count_recompiles():
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
opt = torch.compile(foo, backend=cnt, fullgraph=True)
|
|
|
|
x = torch.nn.Parameter(torch.randn(1, 3))
|
|
opt(x)
|
|
x = torch.nn.Parameter(torch.randn(10, 3))
|
|
opt(x)
|
|
x = torch.nn.Parameter(torch.randn(11, 3))
|
|
opt(x)
|
|
x = torch.nn.Parameter(torch.randn(15, 3))
|
|
opt(x)
|
|
x = torch.nn.Parameter(torch.randn(15, 3))
|
|
opt(x)
|
|
|
|
return cnt
|
|
|
|
@patch.object(torch._dynamo.config, "force_parameter_static_shapes", True)
|
|
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", False)
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def run_static_comp_default_param():
|
|
return run_foo_6_times_and_count_recompiles()
|
|
|
|
@patch.object(torch._dynamo.config, "force_parameter_static_shapes", True)
|
|
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", True)
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def run_dynamic_comp_default_param():
|
|
return run_foo_6_times_and_count_recompiles()
|
|
|
|
@patch.object(torch._dynamo.config, "force_parameter_static_shapes", False)
|
|
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", False)
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def run_static_comp_dynamic_param():
|
|
return run_foo_6_times_and_count_recompiles()
|
|
|
|
@patch.object(torch._dynamo.config, "force_parameter_static_shapes", False)
|
|
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", True)
|
|
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
|
|
def run_dynamic_comp_dynamic_param():
|
|
return run_foo_6_times_and_count_recompiles()
|
|
|
|
torch._dynamo.reset()
|
|
static_comp_default_param = run_static_comp_default_param()
|
|
self.assertEqual(static_comp_default_param.frame_count, 4)
|
|
self.assertEqual(static_comp_default_param.op_count, 4)
|
|
|
|
torch._dynamo.reset()
|
|
dynamic_comp_default_param = run_dynamic_comp_default_param()
|
|
self.assertEqual(dynamic_comp_default_param.frame_count, 4)
|
|
self.assertEqual(dynamic_comp_default_param.op_count, 4)
|
|
|
|
torch._dynamo.reset()
|
|
static_comp_dynamic_param = run_static_comp_dynamic_param()
|
|
self.assertEqual(static_comp_dynamic_param.frame_count, 4)
|
|
self.assertEqual(static_comp_dynamic_param.op_count, 4)
|
|
|
|
torch._dynamo.reset()
|
|
dynamic_comp_dynamic_param = run_dynamic_comp_dynamic_param()
|
|
self.assertEqual(dynamic_comp_dynamic_param.frame_count, 2)
|
|
self.assertEqual(dynamic_comp_dynamic_param.op_count, 2)
|
|
|
|
def test_simple_module_recompile(self):
|
|
class SimpleDropout(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.dropout = torch.nn.Dropout(0.5)
|
|
self.linear = torch.nn.Linear(10, 1)
|
|
|
|
def forward(self, x):
|
|
return self.dropout(self.linear(x))
|
|
|
|
model = SimpleDropout()
|
|
x = torch.randn(10)
|
|
counter = torch._dynamo.testing.CompileCounter()
|
|
model = torch.compile(model, backend=counter, fullgraph=True)
|
|
for _ in range(20):
|
|
model.eval()
|
|
model(x)
|
|
model.train()
|
|
model(x)
|
|
self.assertEqual(counter.frame_count, 2)
|
|
|
|
@patch.object(torch._dynamo.config, "recompile_limit", 2)
|
|
def test_no_recursive_compile_after_cache_limit_hit(self):
|
|
def f(x, n):
|
|
x = x + n
|
|
return g(x, n)
|
|
|
|
def g(x, n):
|
|
x = x + n
|
|
return h(x, n)
|
|
|
|
def h(x, n):
|
|
return x + n
|
|
|
|
counter = torch._dynamo.testing.CompileCounter()
|
|
opt_f = torch.compile(f, backend=counter, dynamic=False)
|
|
for i in range(10):
|
|
opt_f(torch.ones(3), i)
|
|
self.assertEqual(counter.frame_count, 2)
|
|
|
|
def test_automatic_dynamic_on_closed_ints(self):
|
|
def f(x):
|
|
def g(y):
|
|
return y + x
|
|
|
|
return g
|
|
|
|
counter = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch.compile(backend=counter)
|
|
def h(x, g):
|
|
return g(x)
|
|
|
|
for i in range(10):
|
|
h(torch.randn(5), f(i))
|
|
self.assertEqual(counter.frame_count, 2)
|
|
|
|
@patch.object(torch._dynamo.config, "recompile_limit", 2)
|
|
def test_run_mode_after_cache_limit_hit(self):
|
|
def f(x, n):
|
|
x = x + n
|
|
if torch._dynamo.is_compiling():
|
|
x = x + 1
|
|
return g(x, n)
|
|
|
|
def g(x, n):
|
|
x = x + n
|
|
if torch._dynamo.is_compiling():
|
|
x = x + 2
|
|
return x
|
|
|
|
counter = torch._dynamo.testing.CompileCounter()
|
|
opt_f = torch.compile(f, backend=counter, dynamic=False)
|
|
# compiles
|
|
self.assertEqual(opt_f(torch.ones(3), 0), torch.ones(3) + 3)
|
|
self.assertEqual(opt_f(torch.ones(3), 1), torch.ones(3) + 5)
|
|
# cache limit hit
|
|
self.assertEqual(opt_f(torch.ones(3), 2), torch.ones(3) + 4)
|
|
self.assertEqual(opt_f(torch.ones(3), 3), torch.ones(3) + 6)
|
|
# run mode
|
|
self.assertEqual(opt_f(torch.ones(3), 0), torch.ones(3) + 3)
|
|
self.assertEqual(opt_f(torch.ones(3), 1), torch.ones(3) + 5)
|
|
self.assertEqual(counter.frame_count, 2)
|
|
|
|
@torch._dynamo.config.patch(automatic_dynamic_shapes_mark_as="unbacked")
|
|
def test_automatic_dynamic_shapes_mark_as_unbacked(self):
|
|
counter = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch.compile(backend=counter)
|
|
def f(x):
|
|
return x * x
|
|
|
|
f(torch.randn(3))
|
|
f(torch.randn(2))
|
|
f(torch.randn(1))
|
|
f(torch.randn(0))
|
|
|
|
self.assertEqual(counter.frame_count, 2) # not three or four!
|
|
|
|
@torch._dynamo.config.patch(automatic_dynamic_shapes_mark_as="oblivious")
|
|
def test_automatic_dynamic_shapes_mark_as_oblivious(self):
|
|
counter = torch._dynamo.testing.CompileCounter()
|
|
|
|
def f(x):
|
|
if x.size(0) < 10:
|
|
return x * 1
|
|
else:
|
|
return x + 10
|
|
|
|
opt_f = torch.compile(backend=counter, fullgraph=True)(f)
|
|
|
|
for i in [3, 2, 1, 0]:
|
|
self.assertEqual(f(torch.zeros(i)), opt_f(torch.zeros(i)))
|
|
|
|
self.assertEqual(counter.frame_count, 2) # not three or four!
|
|
|
|
@torch._dynamo.config.patch(automatic_dynamic_shapes_mark_as="oblivious")
|
|
def test_automatic_dynamic_shapes_mark_as_oblivious_fail_counterfactual(self):
|
|
counter = torch._dynamo.testing.CompileCounter()
|
|
|
|
def f(x):
|
|
if x.size(0) < 2:
|
|
return x * 1
|
|
else:
|
|
return x + 10
|
|
|
|
opt_f = torch.compile(backend=counter, fullgraph=True)(f)
|
|
|
|
opt_f(torch.randn(1))
|
|
with self.assertRaises(torch._dynamo.exc.UserError):
|
|
opt_f(torch.randn(0))
|
|
|
|
def test_ambient_autocast_recompile(self):
|
|
weights = torch.randn(10, 10)
|
|
counter = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
|
|
|
|
@torch.compile(backend=counter, fullgraph=True)
|
|
def fn(x):
|
|
return torch.mm(x, weights)
|
|
|
|
x = torch.randn(1, 10)
|
|
|
|
self.assertEqual(fn(x).dtype, torch.float32)
|
|
|
|
with torch.autocast("cpu", torch.float16):
|
|
self.assertEqual(fn(x).dtype, torch.float16)
|
|
|
|
with torch.autocast("cpu", torch.bfloat16):
|
|
self.assertEqual(fn(x).dtype, torch.bfloat16)
|
|
|
|
# should recompile each time
|
|
self.assertEqual(counter.frame_count, 3)
|
|
|
|
def test_autocast_constant_fold(self):
|
|
# test that constant-folded autocast functions
|
|
# work properly - it should work if the global autocast
|
|
# state is guarded.
|
|
|
|
weights = torch.randn(10, 10)
|
|
counter = torch._dynamo.testing.CompileCounterWithBackend("eager")
|
|
|
|
def fn(x):
|
|
if torch.get_autocast_dtype("cpu") == torch.float16:
|
|
x = x + 1
|
|
else:
|
|
x = x - 1
|
|
return torch.mm(x, weights)
|
|
|
|
opt_fn = torch.compile(fn, backend=counter, fullgraph=True)
|
|
|
|
x = torch.randn(1, 10)
|
|
|
|
with torch.autocast("cpu", torch.float16):
|
|
self.assertEqual(fn(x), opt_fn(x))
|
|
|
|
with torch.autocast("cpu", torch.bfloat16):
|
|
self.assertEqual(fn(x), opt_fn(x))
|
|
|
|
self.assertEqual(counter.frame_count, 2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|