pytorch/torch/optim/nadam.py
Jane Xu b5ba80828f [optim] Rectify capturable testing and fix bugs! (#118326)
This PR fixes several bugs, listed in priority:
1. `load_state_dict` with a nontensor step was incorrect for capturable and fused implementations since we don't create the tensors on the right device in `__setstate__`. This has been fixed.
2. The most recently added capturable implementations forgot the check that all tensors should be on CUDA for eager. We've now added those checks
3. The most recent change in Adamax only adds capturable for foreach but will silently be incorrect for forloop/single-tensor. I've added erroring and modified testing with many many many skips for that. Honestly my preference after this PR has only been further cemented  that we should just do the single tensor and multi tensor capturable implementations together in the future. @mlazos
4. The conditional for adding cuda-supported configs for the optimizer infos was incorrect! So we hadn't been testing capturable! This also stands rectified and was the trigger for this PR in the first place.
5. In a similar way, the conditional for `_get_optim_inputs_including_global_cliquey_kwargs` was incorrect sometimes as well. This has also been corrected.

The following is not a bug, but is just something to make life simpler by not needing to handle Nones: `optim_input_funcs` must now mandatorily take in a `device`, which could be a string or a torch.device.

Details for posterity:
4. Running the test_foreach_matches_forloop test and printing the configs that get printed yields capturable getting included, which is correct.
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (5d50138f)]$ python test/test_optim.py -k test_foreach_matches_forloop_AdamW_cuda
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={}, desc=default
params=None, kwargs={'lr': 0.01}, desc=non-default lr
params=None, kwargs={'weight_decay': 0.1}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'maximize': True}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True}, desc=amsgrad
params=None, kwargs={'capturable': True}, desc=capturable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True}, desc=capturable, amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True}, desc=Tensor lr with capturable and amsgrad
.
----------------------------------------------------------------------
Ran 1 test in 19.229s

OK
```
5. Running the test_optimizer_can_be_printed test (which calls `_get_optim_inputs_including_global_cliquey_kwargs`) and printing what gets run is also now correct.
```
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={'differentiable': False}, desc=default
params=None, kwargs={'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.1, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': True}, desc=amsgrad & differentiable
.params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False, 'fused': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True, 'fused': False}, desc=default & differentiable
params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': True}, desc=default & fused
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False, 'fused': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True, 'fused': False}, desc=non-default lr & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': True}, desc=non-default lr & fused
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'foreach': True, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': True, 'fused': False}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': True}, desc=nonzero weight_decay & fused
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=maximize & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=amsgrad & fused
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable
params=None, kwargs={'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable & foreach
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable & differentiable
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable, amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable, amsgrad & fused
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad & foreach
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=Tensor lr with capturable and amsgrad & differentiable
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=Tensor lr with capturable and amsgrad & fused
.
----------------------------------------------------------------------
Ran 2 tests in 11.112s

OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118326
Approved by: https://github.com/mlazos
2024-02-02 19:13:00 +00:00

478 lines
22 KiB
Python

import torch
from torch import Tensor
from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _dispatch_sqrt,
_stack_if_compiling, _get_scalar_dtype, _default_to_fused_or_foreach,
_view_as_real, _capturable_doc, _differentiable_doc, _foreach_doc,)
from typing import List, Optional
__all__ = ['NAdam', 'nadam']
class NAdam(Optimizer):
def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, momentum_decay=4e-3, decoupled_weight_decay: bool = False,
*, foreach: Optional[bool] = None, capturable: bool = False,
differentiable: bool = False):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
if not 0.0 <= momentum_decay:
raise ValueError(f"Invalid momentum_decay value: {momentum_decay}")
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, momentum_decay=momentum_decay,
decoupled_weight_decay=decoupled_weight_decay,
foreach=foreach, capturable=capturable, differentiable=differentiable)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault('foreach', None)
group.setdefault('capturable', False)
group.setdefault('differentiable', False)
group.setdefault('decoupled_weight_decay', False)
for p in group["params"]:
p_state = self.state.get(p, [])
if len(p_state) != 0:
if not torch.is_tensor(p_state['step']):
step_val = float(p_state["step"])
p_state["step"] = (torch.tensor(step_val, dtype=_get_scalar_dtype(), device=p.device)
if group['capturable'] else torch.tensor(step_val, dtype=_get_scalar_dtype()))
if not torch.is_tensor(p_state['mu_product']):
mu_prod_val = p_state["mu_product"]
p_state["mu_product"] = (torch.tensor(mu_prod_val, dtype=_get_scalar_dtype(), device=p.device)
if group['capturable'] else torch.tensor(mu_prod_val, dtype=_get_scalar_dtype()))
def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps):
has_complex = False
for p in group['params']:
if p.grad is not None:
has_complex |= torch.is_complex(p)
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError('NAdam does not support sparse gradients')
grads.append(p.grad)
state = self.state[p]
# Lazy state initialization
if len(state) == 0:
# note(crcrpar): [special device hosting for step]
# Deliberately host `step` and `mu_product` on CPU if capturable is False.
# This is because kernel launches are costly on CUDA and XLA.
state['step'] = (
torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
if group['capturable'] else torch.tensor(0.0, dtype=_get_scalar_dtype())
)
state['mu_product'] = (
torch.ones((), dtype=_get_scalar_dtype(), device=p.device)
if group['capturable'] else torch.tensor(1.0, dtype=_get_scalar_dtype())
)
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
exp_avgs.append(state['exp_avg'])
exp_avg_sqs.append(state['exp_avg_sq'])
mu_products.append(state['mu_product'])
state_steps.append(state['step'])
return has_complex
@_use_grad_for_differentiable
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self._cuda_graph_capture_health_check()
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
mu_products = []
state_steps = []
beta1, beta2 = group['betas']
has_complex = self._init_group(group, params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps)
nadam(params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
mu_products,
state_steps,
beta1=beta1,
beta2=beta2,
lr=group['lr'],
weight_decay=group['weight_decay'],
momentum_decay=group['momentum_decay'],
eps=group['eps'],
decoupled_weight_decay=group['decoupled_weight_decay'],
foreach=group['foreach'],
capturable=group['capturable'],
differentiable=group['differentiable'],
has_complex=has_complex)
return loss
NAdam.__doc__ = r"""Implements NAdam algorithm.
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)},
\: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\
&\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)} \\
&\hspace{13mm} \: \textit{decoupled\_weight\_decay} \\
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
v_0 \leftarrow 0 \text{ ( second moment)} \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm} \theta_t \leftarrow \theta_{t-1} \\
&\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\
&\hspace{10mm}\textbf{if} \: \textit{decoupled\_weight\_decay} \\
&\hspace{15mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\
&\hspace{10mm}\textbf{else} \\
&\hspace{15mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
&\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{t \psi} \big) \\
&\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
&\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
&\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex]
& \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i}) \\
&\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\
&\hspace{5mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
\big(\sqrt{\widehat{v_t}} + \epsilon \big) \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_.
""" + fr"""
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 2e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
momentum_decay (float, optional): momentum momentum_decay (default: 4e-3)
decoupled_weight_decay (bool, optional): whether to use decoupled weight
decay as in AdamW to obtain NAdamW (default: False)
{_foreach_doc}
{_capturable_doc}
{_differentiable_doc}
.. _Incorporating Nesterov Momentum into Adam:
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
"""
def nadam(params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
mu_products: List[Tensor],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
decoupled_weight_decay: bool = False,
foreach: Optional[bool] = None,
capturable: bool = False,
differentiable: bool = False,
has_complex: bool = False,
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
momentum_decay: float,
eps: float):
r"""Functional API that performs NAdam algorithm computation.
See :class:`~torch.optim.NAdam` for details.
"""
if not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")
if not all(isinstance(t, torch.Tensor) for t in mu_products):
raise RuntimeError("API has changed, `mu_products` argument must contain a list of singleton tensors")
if foreach is None:
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
if foreach and torch.jit.is_scripting():
raise RuntimeError('torch.jit.script not supported with foreach optimizers')
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_nadam
else:
func = _single_tensor_nadam
func(params,
grads,
exp_avgs,
exp_avg_sqs,
mu_products,
state_steps,
beta1=beta1,
beta2=beta2,
lr=lr,
weight_decay=weight_decay,
momentum_decay=momentum_decay,
decoupled_weight_decay=decoupled_weight_decay,
eps=eps,
capturable=capturable,
differentiable=differentiable,
has_complex=has_complex)
def _single_tensor_nadam(params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
mu_products: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
momentum_decay: float,
eps: float,
decoupled_weight_decay: bool,
capturable: bool,
differentiable: bool,
has_complex: bool):
for i, param in enumerate(params):
grad = grads[i]
exp_avg = exp_avgs[i]
exp_avg_sq = exp_avg_sqs[i]
mu_product = mu_products[i]
step_t = state_steps[i]
if torch.is_complex(param):
param = torch.view_as_real(param)
grad = torch.view_as_real(grad)
exp_avg = torch.view_as_real(exp_avg)
exp_avg_sq = torch.view_as_real(exp_avg_sq)
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch._utils.is_compiling() and capturable:
assert (
(param.is_cuda and mu_product.is_cuda and step_t.is_cuda) or (param.is_xla and mu_product.is_xla and step_t.is_xla)
), "If capturable=True, params, mu_products, and state_steps must be CUDA or XLA tensors."
# update step
step_t += 1
if capturable:
step = step_t
else:
step = _get_value(step_t)
bias_correction2 = 1 - beta2 ** step
if weight_decay != 0:
if decoupled_weight_decay:
# Perform stepweight decay
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# calculate the momentum cache \mu^{t} and \mu^{t+1}
mu = beta1 * (1. - 0.5 * (0.96 ** (step * momentum_decay)))
mu_next = beta1 * (1. - 0.5 * (0.96 ** ((step + 1) * momentum_decay)))
# update mu_product
mu_product *= mu
# decay the first and second moment running average coefficient
exp_avg.lerp_(grad, 1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = exp_avg_sq.div(bias_correction2).sqrt()
if differentiable or capturable:
denom = denom.add(eps)
# Make autograd track the operations
# by updating the grad and exp_avg directly and not using the
# scalar "value" argument of addcdiv.
mu_product_next = mu_product * mu_next
grad = grad * (-lr * (1. - mu) / (1. - mu_product))
exp_avg = exp_avg * (-lr * mu_next / (1. - mu_product_next))
param.addcdiv_(grad, denom)
param.addcdiv_(exp_avg, denom)
else:
mu_product_next = _get_value(mu_product) * mu_next
denom.add_(eps)
param.addcdiv_(grad, denom, value=(-lr * (1. - mu) / (1. - _get_value(mu_product))))
param.addcdiv_(exp_avg, denom, value=(-lr * mu_next) / (1. - mu_product_next))
def _multi_tensor_nadam(params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
mu_products: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
momentum_decay: float,
eps: float,
decoupled_weight_decay: bool,
capturable: bool,
differentiable: bool,
has_complex: bool):
if len(params) == 0:
return
assert not differentiable, "_foreach ops don't support autograd"
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch._utils.is_compiling() and capturable:
assert all(p.is_cuda and mp.is_cuda and step.is_cuda
for p, mp, step in zip(params, mu_products, state_steps)), \
"If capturable=True, params, mu_products, and state_steps must be CUDA tensors."
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps])
for ((grouped_params, grouped_grads, grouped_exp_avgs,
grouped_exp_avg_sqs, grouped_mu_products, grouped_state_steps), _) in grouped_tensors.values():
# handle complex
if has_complex:
_view_as_real(grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs)
# Update steps
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
# wrapped it once now. The alpha is required to assure we go to the right overload.
if grouped_state_steps[0].is_cpu:
torch._foreach_add_(grouped_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0)
else:
torch._foreach_add_(grouped_state_steps, 1)
if weight_decay != 0:
if decoupled_weight_decay:
# Perform stepweight decay
torch._foreach_mul_(grouped_params, 1 - lr * weight_decay)
else:
grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
# Decay the first and second moment running average coefficient
torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)
torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
torch._foreach_addcmul_(grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2)
exp_avg_sq_sqrt = torch._foreach_sqrt(grouped_exp_avg_sqs)
if capturable:
# mus will be beta1 * (1 - 0.5 * 0.96 ** (step * momentum_decay))
exponent = torch._foreach_mul(grouped_state_steps, momentum_decay)
mus = torch._foreach_pow(0.96, exponent)
torch._foreach_mul_(mus, -0.5)
torch._foreach_add_(mus, 1.0)
torch._foreach_mul_(mus, beta1)
# mu_nexts will be beta1 * (1 - 0.5 * 0.96 ** ((step + 1) * momentum_decay))
torch._foreach_add_(exponent, momentum_decay)
mu_nexts = torch._foreach_pow(0.96, exponent)
torch._foreach_mul_(mu_nexts, -0.5)
torch._foreach_add_(mu_nexts, 1.0)
torch._foreach_mul_(mu_nexts, beta1)
# save peak memory as we don't need exponent anymore
del exponent
bias_correction_sqrt = torch._foreach_pow(beta2, grouped_state_steps)
# foreach_sub doesn't allow a scalar as the first arg
torch._foreach_sub_(bias_correction_sqrt, 1.0)
torch._foreach_neg_(bias_correction_sqrt)
torch._foreach_sqrt_(bias_correction_sqrt)
else:
bias_correction_sqrt = [_dispatch_sqrt(1 - beta2 ** _get_value(step)) for step in grouped_state_steps]
mus = [beta1 * (1. - 0.5 * (0.96 ** (_get_value(step) * momentum_decay))) for step in grouped_state_steps]
mu_nexts = [beta1 * (1. - 0.5 * (0.96 ** ((_get_value(step) + 1) * momentum_decay)))
for step in grouped_state_steps]
# update mu_products
torch._foreach_mul_(grouped_mu_products, mus)
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
torch._foreach_add_(exp_avg_sq_sqrt, eps)
# explicitly delete bias_correction refs to save memory
del bias_correction_sqrt
if capturable:
# Build up the step_size multiplier for grad, reusing mus' memory
torch._foreach_sub_(mus, 1.0)
torch._foreach_mul_(mus, lr)
# foreach_sub doesn't allow a scalar as the first arg
denom = torch._foreach_sub(grouped_mu_products, 1.0)
torch._foreach_neg_(denom)
torch._foreach_div_(mus, denom)
# - lr * (1 - mu) / (1 - mu_product)
step_size_grads = mus
# explicitly delete denom to save memory
del denom
# Build up the step_size multiplier for exp_avg, reusing mu_nexts' memory
denom = torch._foreach_mul(grouped_mu_products, mu_nexts)
torch._foreach_mul_(mu_nexts, lr)
# foreach_sub doesn't allow a scalar as the first arg, but it's okay because
# we need a negative here anyway
torch._foreach_sub_(denom, 1.0)
torch._foreach_div_(mu_nexts, denom)
# - lr * mu_next / (1 - mu_product * mu_next)
step_size_expavg = mu_nexts
# explicitly delete denom to save memory
del denom
# we cannot inplace into step_size_grads cuz it is a list of ScalarTensors
# and mul'ing with grouped_grads will result in a list of bigger Tensors
numerator = torch._foreach_mul(step_size_grads, grouped_grads)
torch._foreach_addcmul_(numerator, step_size_expavg, grouped_exp_avgs)
# finally, update params
torch._foreach_addcdiv_(grouped_params, numerator, exp_avg_sq_sqrt)
else:
step_size_grads = _stack_if_compiling([(lr * (1. - mu) / (1. - _get_value(mu_product))) * -1
for mu_product, mu in zip(grouped_mu_products, mus)])
step_size_expavg = _stack_if_compiling([(lr * mu_next / (1. - _get_value(mu_product) * mu_next)) * -1
for mu_product, mu_next in zip(grouped_mu_products, mu_nexts)])
torch._foreach_addcdiv_(grouped_params, grouped_grads, exp_avg_sq_sqrt, step_size_grads)
torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, exp_avg_sq_sqrt, step_size_expavg)