pytorch/caffe2/python/workspace_test.py
Yangqing Jia cf317d1106 create_net: explicitly specify if one wants to overwrite the network.
Summary:
This is from discussion with dzhulgakov : as a step towards revisiting the
core.Net autonaming, we will first guard against accidental overwrites of
existing networks in the workspace.

ajtulloch since we are doing Predictors in mobile, this should be safe right?

azzolini - I assume this would be safe, but would love to get your approval.

akyrola - would this hurt xray?

Reviewed By: dzhulgakov

Differential Revision: D4897725

fbshipit-source-id: aa41271927ad6671f07a53b9505283623f8c49e5
2017-04-17 21:46:53 -07:00

525 lines
21 KiB
Python

import numpy as np
import os
import unittest
from caffe2.proto import caffe2_pb2
from caffe2.python import core, test_util, workspace, cnn
import caffe2.python.hypothesis_test_util as htu
import hypothesis.strategies as st
from hypothesis import given
class TestWorkspace(unittest.TestCase):
def setUp(self):
self.net = core.Net("test-net")
self.testblob_ref = self.net.ConstantFill(
[], "testblob", shape=[1, 2, 3, 4], value=1.0)
workspace.ResetWorkspace()
def testRootFolder(self):
self.assertEqual(workspace.ResetWorkspace(), True)
self.assertEqual(workspace.RootFolder(), ".")
self.assertEqual(
workspace.ResetWorkspace("/tmp/caffe-workspace-test"), True)
self.assertEqual(workspace.RootFolder(), "/tmp/caffe-workspace-test")
def testWorkspaceHasBlobWithNonexistingName(self):
self.assertEqual(workspace.HasBlob("non-existing"), False)
def testRunOperatorOnce(self):
self.assertEqual(
workspace.RunOperatorOnce(
self.net.Proto().op[0].SerializeToString()
), True
)
self.assertEqual(workspace.HasBlob("testblob"), True)
blobs = workspace.Blobs()
self.assertEqual(len(blobs), 1)
self.assertEqual(blobs[0], "testblob")
def testRunNetOnce(self):
self.assertEqual(
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
self.assertEqual(workspace.HasBlob("testblob"), True)
def testCurrentWorkspaceWrapper(self):
self.assertNotIn("testblob", workspace.C.Workspace.current.blobs)
self.assertEqual(
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
self.assertEqual(workspace.HasBlob("testblob"), True)
self.assertIn("testblob", workspace.C.Workspace.current.blobs)
workspace.ResetWorkspace()
self.assertNotIn("testblob", workspace.C.Workspace.current.blobs)
def testRunPlan(self):
plan = core.Plan("test-plan")
plan.AddStep(core.ExecutionStep("test-step", self.net))
self.assertEqual(
workspace.RunPlan(plan.Proto().SerializeToString()), True)
self.assertEqual(workspace.HasBlob("testblob"), True)
def testConstructPlanFromSteps(self):
step = core.ExecutionStep("test-step-as-plan", self.net)
self.assertEqual(workspace.RunPlan(step), True)
self.assertEqual(workspace.HasBlob("testblob"), True)
def testResetWorkspace(self):
self.assertEqual(
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
self.assertEqual(workspace.HasBlob("testblob"), True)
self.assertEqual(workspace.ResetWorkspace(), True)
self.assertEqual(workspace.HasBlob("testblob"), False)
def testTensorAccess(self):
ws = workspace.C.Workspace()
""" test in-place modification """
ws.create_blob("tensor").feed(np.array([1.1, 1.2, 1.3]))
tensor = ws.blobs["tensor"].tensor()
tensor.data[0] = 3.3
val = np.array([3.3, 1.2, 1.3])
np.testing.assert_array_equal(tensor.data, val)
np.testing.assert_array_equal(ws.blobs["tensor"].fetch(), val)
""" test in-place initialization """
tensor.init([2, 3], core.DataType.INT32)
tensor.data[1, 1] = 100
val = np.zeros([2, 3], dtype=np.int32)
val[1, 1] = 100
np.testing.assert_array_equal(tensor.data, val)
np.testing.assert_array_equal(ws.blobs["tensor"].fetch(), val)
""" strings cannot be initialized from python """
with self.assertRaises(RuntimeError):
tensor.init([3, 4], core.DataType.STRING)
""" feed (copy) data into tensor """
val = np.array([['abc', 'def'], ['ghi', 'jkl']], dtype=np.object)
tensor.feed(val)
self.assertEquals(tensor.data[0, 0], 'abc')
np.testing.assert_array_equal(ws.blobs["tensor"].fetch(), val)
val = np.array([1.1, 10.2])
tensor.feed(val)
val[0] = 5.2
self.assertEquals(tensor.data[0], 1.1)
""" fetch (copy) data from tensor """
val = np.array([1.1, 1.2])
tensor.feed(val)
val2 = tensor.fetch()
tensor.data[0] = 5.2
val3 = tensor.fetch()
np.testing.assert_array_equal(val, val2)
self.assertEquals(val3[0], 5.2)
def testFetchFeedBlob(self):
self.assertEqual(
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
fetched = workspace.FetchBlob("testblob")
# check if fetched is correct.
self.assertEqual(fetched.shape, (1, 2, 3, 4))
np.testing.assert_array_equal(fetched, 1.0)
fetched[:] = 2.0
self.assertEqual(workspace.FeedBlob("testblob", fetched), True)
fetched_again = workspace.FetchBlob("testblob")
self.assertEqual(fetched_again.shape, (1, 2, 3, 4))
np.testing.assert_array_equal(fetched_again, 2.0)
def testFetchFeedBlobViaBlobReference(self):
self.assertEqual(
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
fetched = workspace.FetchBlob(self.testblob_ref)
# check if fetched is correct.
self.assertEqual(fetched.shape, (1, 2, 3, 4))
np.testing.assert_array_equal(fetched, 1.0)
fetched[:] = 2.0
self.assertEqual(workspace.FeedBlob(self.testblob_ref, fetched), True)
fetched_again = workspace.FetchBlob("testblob") # fetch by name now
self.assertEqual(fetched_again.shape, (1, 2, 3, 4))
np.testing.assert_array_equal(fetched_again, 2.0)
def testFetchFeedBlobTypes(self):
for dtype in [np.float16, np.float32, np.float64, np.bool,
np.int8, np.int16, np.int32, np.int64,
np.uint8, np.uint16]:
try:
rng = np.iinfo(dtype).max * 2
except ValueError:
rng = 1000
data = ((np.random.rand(2, 3, 4) - 0.5) * rng).astype(dtype)
self.assertEqual(workspace.FeedBlob("testblob_types", data), True)
fetched_back = workspace.FetchBlob("testblob_types")
self.assertEqual(fetched_back.shape, (2, 3, 4))
self.assertEqual(fetched_back.dtype, dtype)
np.testing.assert_array_equal(fetched_back, data)
def testFetchFeedBlobBool(self):
"""Special case for bool to ensure coverage of both true and false."""
data = np.zeros((2, 3, 4)).astype(np.bool)
data.flat[::2] = True
self.assertEqual(workspace.FeedBlob("testblob_types", data), True)
fetched_back = workspace.FetchBlob("testblob_types")
self.assertEqual(fetched_back.shape, (2, 3, 4))
self.assertEqual(fetched_back.dtype, np.bool)
np.testing.assert_array_equal(fetched_back, data)
def testFetchFeedBlobZeroDim(self):
data = np.empty(shape=(2, 0, 3), dtype=np.float32)
self.assertEqual(workspace.FeedBlob("testblob_empty", data), True)
fetched_back = workspace.FetchBlob("testblob_empty")
self.assertEqual(fetched_back.shape, (2, 0, 3))
self.assertEqual(fetched_back.dtype, np.float32)
def testFetchFeedLongStringTensor(self):
# long strings trigger array of object creation
strs = np.array([
' '.join(10 * ['long string']),
' '.join(128 * ['very long string']),
'small \0\1\2 string',
"Hello, world! I have special \0 symbols \1!"])
workspace.FeedBlob('my_str_tensor', strs)
strs2 = workspace.FetchBlob('my_str_tensor')
self.assertEqual(strs.shape, strs2.shape)
for i in range(0, strs.shape[0]):
self.assertEqual(strs[i], strs2[i])
def testFetchFeedShortStringTensor(self):
# small strings trigger NPY_STRING array
strs = np.array(['elem1', 'elem 2', 'element 3'])
workspace.FeedBlob('my_str_tensor_2', strs)
strs2 = workspace.FetchBlob('my_str_tensor_2')
self.assertEqual(strs.shape, strs2.shape)
for i in range(0, strs.shape[0]):
self.assertEqual(strs[i], strs2[i])
def testFetchFeedPlainString(self):
# this is actual string, not a tensor of strings
s = "Hello, world! I have special \0 symbols \1!"
workspace.FeedBlob('my_plain_string', s)
s2 = workspace.FetchBlob('my_plain_string')
self.assertEqual(s, s2)
def testFetchBlobs(self):
s1 = "test1"
s2 = "test2"
workspace.FeedBlob('s1', s1)
workspace.FeedBlob('s2', s2)
fetch1, fetch2 = workspace.FetchBlobs(['s1', 's2'])
self.assertEquals(s1, fetch1)
self.assertEquals(s2, fetch2)
def testFetchFeedViaBlobDict(self):
self.assertEqual(
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
fetched = workspace.blobs["testblob"]
# check if fetched is correct.
self.assertEqual(fetched.shape, (1, 2, 3, 4))
np.testing.assert_array_equal(fetched, 1.0)
fetched[:] = 2.0
workspace.blobs["testblob"] = fetched
fetched_again = workspace.blobs["testblob"]
self.assertEqual(fetched_again.shape, (1, 2, 3, 4))
np.testing.assert_array_equal(fetched_again, 2.0)
self.assertTrue("testblob" in workspace.blobs)
self.assertFalse("non_existant" in workspace.blobs)
self.assertEqual(len(workspace.blobs), 1)
for key in workspace.blobs:
self.assertEqual(key, "testblob")
class TestMultiWorkspaces(unittest.TestCase):
def setUp(self):
workspace.SwitchWorkspace("default")
workspace.ResetWorkspace()
def testCreateWorkspace(self):
self.net = core.Net("test-net")
self.net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0)
self.assertEqual(
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True
)
self.assertEqual(workspace.HasBlob("testblob"), True)
self.assertEqual(workspace.SwitchWorkspace("test", True), None)
self.assertEqual(workspace.HasBlob("testblob"), False)
self.assertEqual(workspace.SwitchWorkspace("default"), None)
self.assertEqual(workspace.HasBlob("testblob"), True)
try:
# The following should raise an error.
workspace.SwitchWorkspace("non-existing")
# so this should never happen.
self.assertEqual(True, False)
except RuntimeError:
pass
workspaces = workspace.Workspaces()
self.assertTrue("default" in workspaces)
self.assertTrue("test" in workspaces)
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
class TestWorkspaceGPU(test_util.TestCase):
def setUp(self):
workspace.ResetWorkspace()
self.net = core.Net("test-net")
self.net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0)
self.net.RunAllOnGPU()
def testFetchBlobGPU(self):
self.assertEqual(
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
fetched = workspace.FetchBlob("testblob")
# check if fetched is correct.
self.assertEqual(fetched.shape, (1, 2, 3, 4))
np.testing.assert_array_equal(fetched, 1.0)
fetched[:] = 2.0
self.assertEqual(workspace.FeedBlob("testblob", fetched), True)
fetched_again = workspace.FetchBlob("testblob")
self.assertEqual(fetched_again.shape, (1, 2, 3, 4))
np.testing.assert_array_equal(fetched_again, 2.0)
def testDefaultGPUID(self):
self.assertEqual(workspace.SetDefaultGPUID(0), None)
self.assertEqual(workspace.GetDefaultGPUID(), 0)
def testGetCudaPeerAccessPattern(self):
pattern = workspace.GetCudaPeerAccessPattern()
self.assertEqual(type(pattern), np.ndarray)
self.assertEqual(pattern.ndim, 2)
self.assertEqual(pattern.shape[0], pattern.shape[1])
self.assertEqual(pattern.shape[0], workspace.NumCudaDevices())
@unittest.skipIf(not workspace.C.has_mkldnn, "No MKLDNN support.")
class TestWorkspaceMKLDNN(test_util.TestCase):
def testFeedFetchBlobMKLDNN(self):
arr = np.random.randn(2, 3).astype(np.float32)
workspace.FeedBlob(
"testblob_mkldnn", arr, core.DeviceOption(caffe2_pb2.MKLDNN))
fetched = workspace.FetchBlob("testblob_mkldnn")
np.testing.assert_array_equal(arr, fetched)
class TestImmedibate(test_util.TestCase):
def testImmediateEnterExit(self):
workspace.StartImmediate(i_know=True)
self.assertTrue(workspace.IsImmediate())
workspace.StopImmediate()
self.assertFalse(workspace.IsImmediate())
def testImmediateRunsCorrectly(self):
workspace.StartImmediate(i_know=True)
net = core.Net("test-net")
net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0)
self.assertEqual(
workspace.ImmediateBlobs(), ["testblob"])
content = workspace.FetchImmediate("testblob")
# Also, the immediate mode should not invade the original namespace,
# so we check if this is so.
with self.assertRaises(RuntimeError):
workspace.FetchBlob("testblob")
np.testing.assert_array_equal(content, 1.0)
content[:] = 2.0
self.assertTrue(workspace.FeedImmediate("testblob", content))
np.testing.assert_array_equal(
workspace.FetchImmediate("testblob"), 2.0)
workspace.StopImmediate()
with self.assertRaises(RuntimeError):
content = workspace.FetchImmediate("testblob")
def testImmediateRootFolder(self):
workspace.StartImmediate(i_know=True)
# for testing we will look into the _immediate_root_folder variable
# but in normal usage you should not access that.
self.assertTrue(len(workspace._immediate_root_folder) > 0)
root_folder = workspace._immediate_root_folder
self.assertTrue(os.path.isdir(root_folder))
workspace.StopImmediate()
self.assertTrue(len(workspace._immediate_root_folder) == 0)
# After termination, immediate mode should have the root folder
# deleted.
self.assertFalse(os.path.exists(root_folder))
class TestCppEnforceAsException(test_util.TestCase):
def testEnforce(self):
op = core.CreateOperator("Relu", ["X"], ["Y"])
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(op)
class TestCWorkspace(htu.HypothesisTestCase):
def test_net_execution(self):
ws = workspace.C.Workspace()
self.assertEqual(ws.nets, {})
self.assertEqual(ws.blobs, {})
net = core.Net("test-net")
net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0)
ws.create_net(net)
# If we do not specify overwrite, this should raise an error.
with self.assertRaises(RuntimeError):
ws.create_net(net)
# But, if we specify overwrite, this should pass.
ws.create_net(net, True)
# Overwrite can also be a kwarg.
ws.create_net(net, overwrite=True)
self.assertIn("testblob", ws.blobs)
self.assertEqual(len(ws.nets), 1)
net_name = ws.nets.keys()[0]
self.assertIn("test-net", net_name) # May have a suffix such as "_1"
net = ws.nets[net_name].run()
blob = ws.blobs["testblob"]
np.testing.assert_array_equal(
np.ones((1, 2, 3, 4), dtype=np.float32),
blob.fetch())
@given(name=st.text(), value=st.floats(min_value=-1, max_value=1.0))
def test_operator_run(self, name, value):
name = name.encode("ascii", "ignore")
ws = workspace.C.Workspace()
op = core.CreateOperator(
"ConstantFill", [], [name], shape=[1], value=value)
ws.run(op)
self.assertIn(name, ws.blobs)
np.testing.assert_allclose(
[value], ws.blobs[name].fetch(), atol=1e-4, rtol=1e-4)
@given(blob_name=st.text(),
net_name=st.text(),
value=st.floats(min_value=-1, max_value=1.0))
def test_net_run(self, blob_name, net_name, value):
blob_name = blob_name.encode("ascii", "ignore")
net_name = net_name.encode("ascii", "ignore")
ws = workspace.C.Workspace()
net = core.Net(net_name)
net.ConstantFill([], [blob_name], shape=[1], value=value)
ws.run(net)
self.assertIn(blob_name, ws.blobs)
self.assertNotIn(net_name, ws.nets)
np.testing.assert_allclose(
[value], ws.blobs[blob_name].fetch(), atol=1e-4, rtol=1e-4)
@given(blob_name=st.text(),
net_name=st.text(),
plan_name=st.text(),
value=st.floats(min_value=-1, max_value=1.0))
def test_plan_run(self, blob_name, plan_name, net_name, value):
blob_name = blob_name.encode("ascii", "ignore")
net_name = net_name.encode("ascii", "ignore")
plan_name = plan_name.encode("ascii", "ignore")
ws = workspace.C.Workspace()
plan = core.Plan(plan_name)
net = core.Net(net_name)
net.ConstantFill([], [blob_name], shape=[1], value=value)
plan.AddStep(core.ExecutionStep("step", nets=[net], num_iter=1))
ws.run(plan)
self.assertIn(blob_name, ws.blobs)
self.assertIn(str(net), ws.nets)
np.testing.assert_allclose(
[value], ws.blobs[blob_name].fetch(), atol=1e-4, rtol=1e-4)
@given(blob_name=st.text(),
net_name=st.text(),
value=st.floats(min_value=-1, max_value=1.0))
def test_net_create(self, blob_name, net_name, value):
blob_name = blob_name.encode("ascii", "ignore")
net_name = net_name.encode("ascii", "ignore")
ws = workspace.C.Workspace()
net = core.Net(net_name)
net_name = str(net)
net.ConstantFill([], [blob_name], shape=[1], value=value)
ws.create_net(net).run()
self.assertIn(blob_name, ws.blobs)
self.assertIn(net_name, ws.nets)
np.testing.assert_allclose(
[value], ws.blobs[blob_name].fetch(), atol=1e-4, rtol=1e-4)
@given(name=st.text(),
value=htu.tensor(),
device_option=st.sampled_from(htu.device_options))
def test_array_serde(self, name, value, device_option):
name = name.encode("ascii", "ignore")
ws = workspace.C.Workspace()
ws.create_blob(name).feed(value, device_option=device_option)
self.assertIn(name, ws.blobs)
blob = ws.blobs[name]
np.testing.assert_equal(value, ws.blobs[name].fetch())
serde_blob = ws.create_blob("{}_serde".format(name))
serde_blob.deserialize(blob.serialize(name))
np.testing.assert_equal(value, serde_blob.fetch())
@given(name=st.text(), value=st.text())
def test_string_serde(self, name, value):
name = name.encode("ascii", "ignore")
value = value.encode("ascii", "ignore")
ws = workspace.C.Workspace()
ws.create_blob(name).feed(value)
self.assertIn(name, ws.blobs)
blob = ws.blobs[name]
self.assertEqual(value, ws.blobs[name].fetch())
serde_blob = ws.create_blob("{}_serde".format(name))
serde_blob.deserialize(blob.serialize(name))
self.assertEqual(value, serde_blob.fetch())
def test_exception(self):
ws = workspace.C.Workspace()
with self.assertRaises(RuntimeError):
ws.create_net("...")
class TestPredictor(unittest.TestCase):
def _create_model(self):
m = cnn.CNNModelHelper()
y = m.FC("data", "y",
dim_in=4, dim_out=2,
weight_init=m.ConstantInit(1.0),
bias_init=m.ConstantInit(0.0),
axis=0)
m.net.AddExternalOutput(y)
return m
# Use this test with a bigger model to see how using Predictor allows to
# avoid issues with low protobuf size limit in Python
#
# def test_predictor_predefined(self):
# workspace.ResetWorkspace()
# path = 'caffe2/caffe2/test/assets/'
# with open(path + 'squeeze_predict_net.pb') as f:
# self.predict_net = f.read()
# with open(path + 'squeeze_init_net.pb') as f:
# self.init_net = f.read()
# self.predictor = workspace.Predictor(self.init_net, self.predict_net)
# inputs = [np.zeros((1, 3, 256, 256), dtype='f')]
# outputs = self.predictor.run(inputs)
# self.assertEqual(len(outputs), 1)
# self.assertEqual(outputs[0].shape, (1, 1000, 1, 1))
# self.assertAlmostEqual(outputs[0][0][0][0][0], 5.19026289e-05)
def test_predictor_memory_model(self):
workspace.ResetWorkspace()
m = self._create_model()
workspace.FeedBlob("data", np.zeros([4], dtype='float32'))
self.predictor = workspace.Predictor(
workspace.StringifyProto(m.param_init_net.Proto()),
workspace.StringifyProto(m.net.Proto()))
inputs = np.array([1, 3, 256, 256], dtype='float32')
outputs = self.predictor.run([inputs])
np.testing.assert_array_almost_equal(np.array([[516, 516]], dtype='float32'), outputs)
if __name__ == '__main__':
unittest.main()