mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: 1. Adds a function to return auxiliary parameters for each optimizer. This function can be used to serialize the optimizers so that they can be recovered. 2. Fixes the bug that the iteration blob is not incremented by one in each iteration. Suppose there are k parameters using the adam learning rate optimizer, the iteration blob is incremented by k based on the original implementation. Reviewed By: azzolini Differential Revision: D4872397 fbshipit-source-id: d86711feedda2ba83af5f2a18141b06a6a473733
311 lines
11 KiB
Python
311 lines
11 KiB
Python
## @package optimizer
|
|
# Module caffe2.python.optimizer
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from collections import namedtuple
|
|
from caffe2.python import core
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
_OPTIMIZER_ITERATION_NAME = "optimizer_iteration"
|
|
|
|
class Optimizer(object):
|
|
def __init__(self):
|
|
AuxParams = namedtuple("AuxParams", ["local", "shared"])
|
|
self._aux_params = AuxParams(local=[], shared=[])
|
|
|
|
def __call__(self, net, param_init_net, param, grad):
|
|
raise NotImplementedError()
|
|
|
|
@staticmethod
|
|
def build_lr(net, param_init_net, base_learning_rate,
|
|
learning_rate_blob="lr", policy="fixed",
|
|
iter_val=0, **kwargs):
|
|
if not param_init_net.BlobIsDefined(_OPTIMIZER_ITERATION_NAME):
|
|
# Add training operators.
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
iteration = param_init_net.ConstantFill(
|
|
[], _OPTIMIZER_ITERATION_NAME, shape=[1],
|
|
value=iter_val,
|
|
dtype=core.DataType.INT32)
|
|
|
|
iter_mutex = param_init_net.CreateMutex([], ["iteration_mutex"])
|
|
net.AtomicIter([iter_mutex, iteration], [iteration])
|
|
else:
|
|
iteration = param_init_net.GetBlobRef(_OPTIMIZER_ITERATION_NAME)
|
|
|
|
# There is one interesting thing here: since we are minimizing, we are
|
|
# doing "descent" so the learning rate is set to be negative.
|
|
lr = net.LearningRate(
|
|
[iteration],
|
|
learning_rate_blob,
|
|
base_lr=-base_learning_rate,
|
|
policy=policy,
|
|
**kwargs
|
|
)
|
|
return lr, iteration
|
|
|
|
@staticmethod
|
|
def dedup(net, sparse_dedup_aggregator, grad):
|
|
assert (isinstance(grad, core.GradientSlice))
|
|
if sparse_dedup_aggregator:
|
|
return net.DeduplicateGradientSlices(
|
|
grad, aggregator=sparse_dedup_aggregator)
|
|
else:
|
|
return grad
|
|
|
|
def get_auxiliary_parameters(self):
|
|
"""Returns a list of auxiliary parameters.
|
|
|
|
Returns:
|
|
aux_params: A namedtuple, AuxParams.
|
|
|
|
aux_params.local stores a list of blobs. Each blob is a local
|
|
auxiliary parameter. A local auxiliary parameter is a parameter in
|
|
parallel to a learning rate parameter. Take adagrad as an example,
|
|
the local auxiliary parameter is the squared sum parameter, because
|
|
every learning rate has a squared sum associated with it.
|
|
|
|
aux_params.shared also stores a list of blobs. Each blob is a shared
|
|
auxiliary parameter. A shared auxiliary parameter is a parameter
|
|
that is shared across all the learning rate parameters. Take adam as
|
|
an example, the iteration parameter is a shared parameter, because
|
|
all the learning rates share the same iteration parameter.
|
|
"""
|
|
return self._aux_params
|
|
|
|
|
|
class SgdOptimizer(Optimizer):
|
|
def __init__(self, base_learning_rate=0.01, policy='fixed',
|
|
momentum=0.0, **kwargs):
|
|
super(SgdOptimizer, self).__init__()
|
|
self.base_learning_rate = base_learning_rate
|
|
self.policy = policy
|
|
self.momentum = momentum
|
|
self.init_kwargs = kwargs
|
|
|
|
def __call__(self, net, param_init_net, param, grad):
|
|
if self.base_learning_rate <= 0:
|
|
return
|
|
|
|
lr, _ = self.build_lr(
|
|
net, param_init_net,
|
|
base_learning_rate=self.base_learning_rate,
|
|
learning_rate_blob=str(param) + "_lr",
|
|
policy=self.policy,
|
|
**(self.init_kwargs)
|
|
)
|
|
|
|
ONE = param_init_net.ConstantFill([], "ONE", shape=[1], value=1.0)
|
|
self._aux_params.shared.append(ONE)
|
|
|
|
if self.momentum > 0:
|
|
momentum_data = param_init_net.ConstantFill(
|
|
param, str(param) + "_momentum", value=0.)
|
|
self._aux_params.local.append(momentum_data)
|
|
|
|
if isinstance(grad, core.GradientSlice):
|
|
assert self.momentum == 0., "Doesn't support momentum for sparse"
|
|
net.ScatterWeightedSum(
|
|
[param, ONE, grad.indices, grad.values, lr],
|
|
param
|
|
)
|
|
else:
|
|
if self.momentum > 0.:
|
|
net.MomentumSGD(
|
|
[grad, momentum_data, lr], [grad, momentum_data],
|
|
momentum=self.momentum,
|
|
nesterov=1)
|
|
coeff = ONE
|
|
else:
|
|
coeff = lr
|
|
|
|
net.WeightedSum(
|
|
[param, ONE, grad, coeff],
|
|
param
|
|
)
|
|
|
|
|
|
class AdagradOptimizer(Optimizer):
|
|
def __init__(self, alpha=0.01, epsilon=1e-4, policy="fixed",
|
|
sparse_dedup_aggregator=None, engine='', **kwargs):
|
|
super(AdagradOptimizer, self).__init__()
|
|
self.alpha = alpha
|
|
self.epsilon = epsilon
|
|
self.policy = policy
|
|
self.sparse_dedup_aggregator = sparse_dedup_aggregator
|
|
self.engine = engine
|
|
self.init_kwargs = kwargs
|
|
|
|
def __call__(self, net, param_init_net, param, grad):
|
|
if self.alpha <= 0:
|
|
return
|
|
|
|
lr, _ = self.build_lr(
|
|
net, param_init_net,
|
|
base_learning_rate=self.alpha,
|
|
learning_rate_blob=str(param) + "_lr",
|
|
policy=self.policy,
|
|
**(self.init_kwargs)
|
|
)
|
|
|
|
param_squared_sum = param_init_net.ConstantFill(
|
|
[param],
|
|
str(param) + "_squared_sum",
|
|
value=0.0
|
|
)
|
|
self._aux_params.local.append(param_squared_sum)
|
|
|
|
if isinstance(grad, core.GradientSlice):
|
|
grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
|
|
net.SparseAdagrad(
|
|
[param, param_squared_sum, grad.indices, grad.values, lr],
|
|
[param, param_squared_sum],
|
|
epsilon=self.epsilon,
|
|
engine=self.engine
|
|
)
|
|
else:
|
|
net.Adagrad(
|
|
[param, param_squared_sum, grad, lr],
|
|
[param, param_squared_sum],
|
|
epsilon=self.epsilon,
|
|
engine=self.engine
|
|
)
|
|
|
|
|
|
class FtrlOptimizer(Optimizer):
|
|
def __init__(self, alpha=0.01, beta=1e-4, lambda1=0, lambda2=0,
|
|
sparse_dedup_aggregator=None, engine=''):
|
|
super(FtrlOptimizer, self).__init__()
|
|
self.alpha = alpha
|
|
self.beta = beta
|
|
self.lambda1 = lambda1
|
|
self.lambda2 = lambda2
|
|
self.sparse_dedup_aggregator = sparse_dedup_aggregator
|
|
self.engine = engine
|
|
|
|
def __call__(self, net, param_init_net, param, grad):
|
|
if self.alpha <= 0:
|
|
return
|
|
|
|
nz = param_init_net.ConstantFill(
|
|
[param],
|
|
str(param) + "_ftrl_nz",
|
|
extra_shape=[2],
|
|
value=0.0
|
|
)
|
|
self._aux_params.local.append(nz)
|
|
if isinstance(grad, core.GradientSlice):
|
|
grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
|
|
net.SparseFtrl(
|
|
[param, nz, grad.indices, grad.values],
|
|
[param, nz],
|
|
engine=self.engine,
|
|
alpha=self.alpha,
|
|
beta=self.beta,
|
|
lambda1=self.lambda1,
|
|
lambda2=self.lambda2
|
|
)
|
|
else:
|
|
net.Ftrl(
|
|
[param, nz, grad],
|
|
[param, nz],
|
|
engine=self.engine,
|
|
alpha=self.alpha,
|
|
beta=self.beta,
|
|
lambda1=self.lambda1,
|
|
lambda2=self.lambda2
|
|
)
|
|
|
|
class AdamOptimizer(Optimizer):
|
|
def __init__(self, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8,
|
|
policy='fixed', sparse_dedup_aggregator=None,
|
|
engine='', **kwargs):
|
|
super(AdamOptimizer, self).__init__()
|
|
self.alpha = alpha
|
|
self.beta1 = beta1
|
|
self.beta2 = beta2
|
|
self.epsilon = epsilon
|
|
self.policy = policy
|
|
self.sparse_dedup_aggregator = sparse_dedup_aggregator
|
|
self.engine = engine
|
|
self.init_kwargs = kwargs
|
|
|
|
def __call__(self, net, param_init_net, param, grad):
|
|
if self.alpha <= 0:
|
|
return
|
|
|
|
lr, iteration = self.build_lr(
|
|
net, param_init_net,
|
|
base_learning_rate=self.alpha,
|
|
learning_rate_blob=str(param) + "_lr",
|
|
policy=self.policy,
|
|
**(self.init_kwargs)
|
|
)
|
|
|
|
m1 = param_init_net.ConstantFill(
|
|
[param],
|
|
param + "_first_moment",
|
|
value=0.0
|
|
)
|
|
m2 = param_init_net.ConstantFill(
|
|
[param],
|
|
param + "_second_moment",
|
|
value=0.0
|
|
)
|
|
self._aux_params.shared.append(iteration)
|
|
self._aux_params.local.append(m1)
|
|
self._aux_params.local.append(m2)
|
|
if isinstance(grad, core.GradientSlice):
|
|
grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
|
|
net.SparseAdam(
|
|
[param, m1, m2, grad.indices, grad.values, lr, iteration],
|
|
[param, m1, m2],
|
|
beta1=self.beta1,
|
|
beta2=self.beta2,
|
|
epsilon=self.epsilon
|
|
)
|
|
|
|
else:
|
|
net.Adam(
|
|
[param, m1, m2, grad, lr, iteration],
|
|
[param, m1, m2],
|
|
beta1=self.beta1,
|
|
beta2=self.beta2,
|
|
epsilon=self.epsilon)
|
|
|
|
|
|
def build_sgd(model, base_learning_rate, **kwargs):
|
|
sgd_optimizer = SgdOptimizer(base_learning_rate, **kwargs)
|
|
for param, grad in model.GetOptimizationPairs().items():
|
|
sgd_optimizer(model.net, model.param_init_net, param, grad)
|
|
return sgd_optimizer
|
|
|
|
|
|
def build_ftrl(model, engine="SIMD", **kwargs):
|
|
if engine == "SIMD":
|
|
assert core.IsOperator('Ftrl_ENGINE_SIMD')
|
|
assert core.IsOperator('SparseFtrl_ENGINE_SIMD')
|
|
ftrl_optimizer = FtrlOptimizer(engine=engine, **kwargs)
|
|
for param, grad in model.GetOptimizationPairs().items():
|
|
ftrl_optimizer(model.net, model.param_init_net, param, grad)
|
|
return ftrl_optimizer
|
|
|
|
|
|
def build_adagrad(model, base_learning_rate, parameters=None, **kwargs):
|
|
adagrad_optimizer = AdagradOptimizer(alpha=base_learning_rate, **kwargs)
|
|
param_to_grad = model.GetOptimizationPairs(parameters)
|
|
|
|
for param, grad in param_to_grad.items():
|
|
adagrad_optimizer(model.net, model.param_init_net, param, grad)
|
|
return adagrad_optimizer
|
|
|
|
|
|
def build_adam(model, base_learning_rate, **kwargs):
|
|
adam_optimizer = AdamOptimizer(alpha=base_learning_rate, **kwargs)
|
|
for param, grad in model.GetOptimizationPairs().items():
|
|
adam_optimizer(model.net, model.param_init_net, param, grad)
|
|
return adam_optimizer
|