mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Closes https://github.com/caffe2/caffe2/pull/404 Differential Revision: D4943280 Pulled By: Yangqing fbshipit-source-id: c0988598d8ccb8329feac88382686324b90d4d46
63 lines
1.8 KiB
Python
63 lines
1.8 KiB
Python
## @package optimizers
|
|
# Module caffe2.python.layers.optimizers
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import context
|
|
|
|
|
|
@context.define_context(allow_default=True)
|
|
class OptimizerContext(object):
|
|
"""
|
|
Scope driven way to provide optimizers to layers.
|
|
Optimizer can be fetched through the 'get_optimizer' method.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._optimizers = {}
|
|
self._optimizers_list = []
|
|
|
|
def _rebuild_optimizers(self):
|
|
self._optimizers = {}
|
|
for m in self._optimizers_list:
|
|
self._optimizers.update(m)
|
|
|
|
def get_optimizer(self, name):
|
|
assert name in self._optimizers, (
|
|
"{} optimizer is not provided!".format(name))
|
|
return self._optimizers.get(name)
|
|
|
|
def push_optimizers(self, optimizers):
|
|
# optimizer override is allowed
|
|
self._optimizers_list.append(optimizers)
|
|
self._optimizers.update(optimizers)
|
|
|
|
def pop_optimizers(self):
|
|
assert len(self._optimizers_list) > 0
|
|
self._optimizers_list.pop()
|
|
self._rebuild_optimizers()
|
|
|
|
|
|
class Optimizers(object):
|
|
"""
|
|
Optimizers context to provide optimizers to layers
|
|
within the context.
|
|
|
|
Example usage:
|
|
optimizers = {'optim1': optim1, 'optim2': optim2}
|
|
with Optimizers(optimizers):
|
|
optim = OptimizerContext.current().get_optimizer('optim1')
|
|
layer(optim=optim)
|
|
"""
|
|
def __init__(self, optimizers):
|
|
self._optimizers = optimizers
|
|
|
|
def __enter__(self):
|
|
OptimizerContext.current().push_optimizers(self._optimizers)
|
|
return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
OptimizerContext.current().pop_optimizers()
|