mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Reviewed By: kevinbchen Differential Revision: D6300944 fbshipit-source-id: e915c3f3d6b475752d8b7df82ec467d86f88a7c7
272 lines
8.5 KiB
Python
272 lines
8.5 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import copy
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
|
|
from caffe2.python.model_helper import ModelHelper
|
|
from caffe2.python.models import resnet
|
|
from caffe2.python import workspace, brew
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.mkl.rewrite_graph as rewrite_graph
|
|
|
|
|
|
def deterministic_io(model):
|
|
model = copy.deepcopy(model)
|
|
for i, op in enumerate(model.InitProto().op):
|
|
op.device_option.random_seed = i + 1
|
|
if not model.Proto().external_output:
|
|
model.Proto().external_output.extend([model.Proto().op[-1].output[0]])
|
|
return model
|
|
|
|
def simple_fc():
|
|
model = ModelHelper(name="r")
|
|
brew.fc(model, "data", "fc", 10, 10)
|
|
return model, [(1, 10)]
|
|
|
|
def double_matmul():
|
|
model = ModelHelper(name="r")
|
|
fc0 = brew.fc(model, "data", "fc0", 10, 10)
|
|
fc1 = brew.fc(model, fc0, "fc1", 10, 10)
|
|
model.Proto().external_output[:] = [str(fc0), str(fc1)]
|
|
return model, [(1, 10)]
|
|
|
|
def simple_relu():
|
|
model = ModelHelper(name="r")
|
|
brew.relu(model, "data", "fc")
|
|
return model, [(1, 10)]
|
|
|
|
|
|
def simple_mlp():
|
|
model = ModelHelper(name="r")
|
|
brew.relu(
|
|
model,
|
|
brew.fc(
|
|
model,
|
|
brew.relu(
|
|
model,
|
|
brew.fc(
|
|
model,
|
|
"data",
|
|
"fc1",
|
|
10,
|
|
10),
|
|
"rl1"),
|
|
"fc2",
|
|
10,
|
|
10),
|
|
"rl2")
|
|
return model, [(1, 10)]
|
|
|
|
|
|
def simple_cnn():
|
|
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
|
|
brew.conv(
|
|
model, "data", 'conv1', 3, 16, kernel=3, stride=1
|
|
)
|
|
brew.spatial_bn(
|
|
model, 'conv1', 'conv1_spatbn', 16, epsilon=1e-3
|
|
)
|
|
brew.relu(model, 'conv1_spatbn', 'relu1')
|
|
return model, [(1, 3, 32, 32)]
|
|
|
|
|
|
def alexnet():
|
|
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
|
|
conv1 = brew.conv(
|
|
model,
|
|
"data",
|
|
"conv1",
|
|
3,
|
|
64,
|
|
11, ('XavierFill', {}), ('ConstantFill', {}),
|
|
stride=4,
|
|
pad=2
|
|
)
|
|
relu1 = brew.relu(model, conv1, "conv1")
|
|
pool1 = brew.max_pool(model, relu1, "pool1", kernel=3, stride=2, pad=0,
|
|
legacy_pad=3)
|
|
lrn1 = brew.lrn(
|
|
model, pool1, "pool1_lrn", size=5, alpha=1.0e-4, beta=0.75, bias=1.0)
|
|
conv2 = brew.conv(
|
|
model,
|
|
lrn1,
|
|
"conv2",
|
|
64,
|
|
192,
|
|
5,
|
|
('XavierFill', {}),
|
|
('ConstantFill', {}),
|
|
pad=2
|
|
)
|
|
relu2 = brew.relu(model, conv2, "conv2")
|
|
pool2 = brew.max_pool(model, relu2, "pool2", kernel=3, stride=2)
|
|
lrn2 = brew.lrn(
|
|
model, pool2, "pool2_lrn", size=5, alpha=1.0e-4, beta=0.75, bias=1.0)
|
|
conv3 = brew.conv(
|
|
model,
|
|
lrn2,
|
|
"conv3",
|
|
192,
|
|
384,
|
|
3,
|
|
('XavierFill', {}),
|
|
('ConstantFill', {}),
|
|
pad=1
|
|
)
|
|
relu3 = brew.relu(model, conv3, "conv3")
|
|
conv4 = brew.conv(
|
|
model,
|
|
relu3,
|
|
"conv4",
|
|
384,
|
|
256,
|
|
3,
|
|
('XavierFill', {}),
|
|
('ConstantFill', {}),
|
|
pad=1
|
|
)
|
|
relu4 = brew.relu(model, conv4, "conv4")
|
|
conv5 = brew.conv(
|
|
model,
|
|
relu4,
|
|
"conv5",
|
|
256,
|
|
256,
|
|
3,
|
|
('XavierFill', {}),
|
|
('ConstantFill', {}),
|
|
pad=1
|
|
)
|
|
relu5 = brew.relu(model, conv5, "conv5")
|
|
pool5 = brew.max_pool(model, relu5, "pool5", kernel=3, stride=2)
|
|
fc6 = brew.fc(
|
|
model,
|
|
pool5, "fc6", 256 * 6 * 6, 4096, ('XavierFill', {}),
|
|
('ConstantFill', {})
|
|
)
|
|
relu6 = brew.relu(model, fc6, "fc6")
|
|
fc7 = brew.fc(
|
|
model, relu6, "fc7", 4096, 4096, ('XavierFill', {}), ('ConstantFill', {})
|
|
)
|
|
relu7 = brew.relu(model, fc7, "fc7")
|
|
drop7 = brew.dropout(model, relu7, "fc7_dropout", is_test=1, ratio=0.5)
|
|
fc8 = brew.fc(
|
|
model, drop7, "fc8", 4096, 1000, ('XavierFill', {}), ('ConstantFill', {})
|
|
)
|
|
relu8 = brew.relu(model, fc8, "fc8")
|
|
_ = brew.dropout(model, relu8, "fc8_dropout", is_test=1, ratio=0.5)
|
|
return model, [(1, 3, 224, 224)]
|
|
|
|
|
|
def simple_resnet():
|
|
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
|
|
resnet.create_resnet_32x32(
|
|
model, "data", num_input_channels=1, num_groups=1, num_labels=5,
|
|
is_test=True)
|
|
return model, [(1, 1, 32, 32)]
|
|
|
|
|
|
def complex_resnet():
|
|
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
|
|
resnet.create_resnet50(
|
|
model, "data", num_input_channels=1, num_labels=5, is_test=True,
|
|
no_loss=True)
|
|
return model, [(1, 1, 224, 224)]
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.has_mkldnn,
|
|
"Skipping as we do not have mkldnn.")
|
|
class MKLRewriteTest(hu.HypothesisTestCase):
|
|
@given(gen=st.sampled_from([simple_relu, simple_fc,
|
|
simple_mlp, simple_cnn]))
|
|
def test_mkl_simple_rewrite(self, gen):
|
|
cpu_model, (shape,) = gen()
|
|
cpu_model = deterministic_io(cpu_model)
|
|
mkl_model = rewrite_graph.rewrite_model_helper_simple(cpu_model)
|
|
X = np.random.randn(*shape).astype(np.float32)
|
|
|
|
def run(model):
|
|
self.ws.run(model.InitProto())
|
|
self.ws.create_blob(model.Proto().external_input[0]).feed(X)
|
|
self.ws.run(model.Proto())
|
|
return self.ws.blobs[model.Proto().external_output[0]].fetch()
|
|
|
|
np.testing.assert_allclose(run(cpu_model), run(mkl_model),
|
|
atol=1e-4, rtol=1e-4)
|
|
|
|
def test_mkl_resnet_rewrite(self):
|
|
cpu_model, (shape,) = complex_resnet()
|
|
cpu_model = deterministic_io(cpu_model)
|
|
mkl_model = rewrite_graph.rewrite_model_helper_simple(cpu_model)
|
|
np.random.seed(1701)
|
|
X = np.random.randn(*shape).astype(np.float32)
|
|
|
|
def run(model):
|
|
self.ws.run(model.InitProto())
|
|
self.ws.create_blob(model.Proto().external_input[0]).feed(X)
|
|
self.ws.run(model.Proto())
|
|
return self.ws.blobs[model.Proto().external_output[0]].fetch()
|
|
np.testing.assert_allclose(run(cpu_model), run(mkl_model),
|
|
atol=1e-4, rtol=1e-4)
|
|
|
|
def test_mkl_multi_output_rewrite(self):
|
|
cpu_model, shapes = double_matmul()
|
|
cpu_model = deterministic_io(cpu_model)
|
|
mkl_model = rewrite_graph.rewrite_model_helper_simple(cpu_model)
|
|
np.random.seed(1701)
|
|
Xs = [np.random.randn(*shape).astype(np.float32) for shape in shapes]
|
|
|
|
def run(model):
|
|
self.ws.run(model.InitProto())
|
|
for (name, X) in zip(model.Proto().external_input, Xs):
|
|
self.ws.create_blob(name).feed(X)
|
|
print(model.Proto())
|
|
self.ws.run(model.Proto())
|
|
return [self.ws.blobs[name].fetch()
|
|
for name in model.Proto().external_output]
|
|
|
|
run(mkl_model)
|
|
|
|
np.testing.assert_allclose(run(cpu_model), run(mkl_model),
|
|
atol=1e-4, rtol=1e-4)
|
|
|
|
def test_mkl_alexnet_rewrite(self):
|
|
cpu_model, (shape,) = alexnet()
|
|
cpu_model = deterministic_io(cpu_model)
|
|
mkl_model = rewrite_graph.rewrite_model_helper_simple(cpu_model)
|
|
np.random.seed(1701)
|
|
X = np.random.randn(*shape).astype(np.float32)
|
|
|
|
def run(model):
|
|
self.ws.run(model.InitProto())
|
|
self.ws.create_blob(model.Proto().external_input[0]).feed(X)
|
|
self.ws.run(model.Proto())
|
|
return self.ws.blobs[model.Proto().external_output[0]].fetch()
|
|
np.testing.assert_allclose(run(cpu_model), run(mkl_model),
|
|
atol=1e-4, rtol=1e-4)
|
|
|
|
if __name__ == "__main__":
|
|
import unittest
|
|
unittest.main()
|