mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Closes https://github.com/caffe2/caffe2/pull/1260 Differential Revision: D5906739 Pulled By: Yangqing fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
95 lines
3.9 KiB
Python
95 lines
3.9 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
import unittest
|
|
|
|
import numpy as np
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import cnn, core, workspace, test_util
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.has_mkldnn, "Skipping as we do not have mkldnn.")
|
|
class TestMKLBasic(test_util.TestCase):
|
|
def testLRNSpeed(self):
|
|
# We randomly select a shape to test the speed. Intentionally we
|
|
# test a batch size of 1 since this may be the most frequent use
|
|
# case for MKL during deployment time.
|
|
X = np.random.rand(1, 2, 224, 224).astype(np.float32)
|
|
mkl_do = core.DeviceOption(caffe2_pb2.MKLDNN)
|
|
# Makes sure that feed works.
|
|
workspace.FeedBlob("X", X)
|
|
workspace.FeedBlob("X_mkl", X, device_option=mkl_do)
|
|
net = core.Net("test")
|
|
# Makes sure that we can run relu.
|
|
net.LRN("X", ["Y", "Y_Scale"], size=5, alpha=0.001, beta=0.75, bias=2.0, order="NCHW")
|
|
net.LRN("X_mkl", ["Y_mkl", "Y_Scale_mkl"], size=5, alpha=0.001, beta=0.75, bias=2.0, order="NCHW", device_option=mkl_do)
|
|
workspace.CreateNet(net)
|
|
workspace.RunNet(net)
|
|
|
|
# makes sure that the results are good.
|
|
np.testing.assert_allclose(
|
|
workspace.FetchBlob("Y"),
|
|
workspace.FetchBlob("Y_mkl"),
|
|
atol=1e-2,
|
|
rtol=1e-2)
|
|
runtime = workspace.BenchmarkNet(net.Proto().name, 1, 100, True)
|
|
|
|
print("LRN CPU runtime {}, MKL runtime {}.".format(runtime[1], runtime[2]))
|
|
|
|
def testConvReluLRNSpeed(self):
|
|
# We randomly select a shape to test the speed. Intentionally we
|
|
# test a batch size of 1 since this may be the most frequent use
|
|
# case for MKL during deployment time.
|
|
X = np.random.rand(1, 3, 224, 224).astype(np.float32) - 0.5
|
|
W = np.random.rand(64, 3, 11, 11).astype(np.float32) - 0.5
|
|
b = np.random.rand(64).astype(np.float32) - 0.5
|
|
|
|
mkl_do = core.DeviceOption(caffe2_pb2.MKLDNN)
|
|
# Makes sure that feed works.
|
|
workspace.FeedBlob("X", X)
|
|
workspace.FeedBlob("W", W)
|
|
workspace.FeedBlob("b", b)
|
|
workspace.FeedBlob("X_mkl", X, device_option=mkl_do)
|
|
workspace.FeedBlob("W_mkl", W, device_option=mkl_do)
|
|
workspace.FeedBlob("b_mkl", b, device_option=mkl_do)
|
|
|
|
net = core.Net("test")
|
|
|
|
net.Conv(["X", "W", "b"], "C", pad=1, stride=1, kernel=11)
|
|
net.Conv(["X_mkl", "W_mkl", "b_mkl"], "C_mkl",
|
|
pad=1, stride=1, kernel=11, device_option=mkl_do)
|
|
net.Relu("C", "R")
|
|
net.Relu("C_mkl", "R_mkl", device_option=mkl_do)
|
|
net.LRN("R", ["Y", "Y_Scale"], size=5, alpha=0.001, beta=0.75, bias=2.0, order="NCHW")
|
|
net.LRN("R_mkl", ["Y_mkl", "Y_Scale_mkl"],size=5, alpha=0.001, beta=0.75, bias=2.0, order="NCHW", device_option=mkl_do)
|
|
|
|
workspace.CreateNet(net)
|
|
workspace.RunNet(net)
|
|
# makes sure that the results are good.
|
|
np.testing.assert_allclose(
|
|
workspace.FetchBlob("Y"),
|
|
workspace.FetchBlob("Y_mkl"),
|
|
atol=1e-2,
|
|
rtol=1e-2)
|
|
runtime = workspace.BenchmarkNet(net.Proto().name, 1, 100, True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|