pytorch/torch/_C/_distributed_c10d.pyi
Edward Yang dda071587f Revert "Make distributed modules importable even when backend not built (#159889)" (#162568)
This reverts commit a0d026688c.

Revert "Always build USE_DISTRIBUTED. (#160449)"

This reverts commit d80297a684.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162568
Approved by: https://github.com/huydhn
2025-09-10 04:29:42 +00:00

854 lines
25 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# mypy: allow-untyped-defs
# mypy: disable-error-code="type-arg"
from datetime import timedelta
from enum import Enum
from typing import Any, Optional, overload, Union
import torch
from torch import Tensor
from torch._C import ScriptObject
from torch._C._autograd import DeviceType
from torch.futures import Future
# This module is defined in torch/csrc/distributed/c10d/init.cpp
_DEFAULT_FIRST_BUCKET_BYTES: int
_DEFAULT_NO_TIMEOUT: timedelta
_DEFAULT_PG_TIMEOUT: timedelta
_DEFAULT_PG_NCCL_TIMEOUT: timedelta
class BuiltinCommHookType(Enum):
ALLREDUCE = ...
FP16_COMPRESS = ...
def _register_comm_hook(reducer: Reducer, state: Any, comm_hook: Any): ...
def _register_builtin_comm_hook(
reducer: Reducer,
comm_hook_type: BuiltinCommHookType,
): ...
def _set_global_rank(rank: int) -> None: ...
def _hash_tensors(tensors: list[Tensor]) -> int: ...
class GradBucket:
def index(self) -> int: ...
def buffer(self) -> Tensor: ...
def gradients(self) -> list[Tensor]: ...
def is_last(self) -> bool: ...
def set_buffer(self, tensor: Tensor) -> None: ...
def parameters(self) -> list[Tensor]: ...
class Reducer:
def __init__(
self,
params: list[Tensor],
bucket_indices: list[list[int]],
per_bucket_size_limits: list[int],
process_group: ProcessGroup,
expect_sparse_gradients: list[bool] = ...,
bucket_bytes_cap: int = ..., # kDefaultBucketBytesCap in reducer.hpp
find_unused_parameters: bool = ...,
gradient_as_bucket_view: bool = ...,
param_to_name_mapping: dict[int, str] = ...,
first_bucket_types_cap: int = ..., # kDefaultFirstBucketBytes in reducer.hpp
skip_all_reduce_unused_params: bool = ...,
use_python_reducer: bool = ...,
) -> None: ...
def prepare_for_forward(self) -> None: ...
def prepare_for_backward(self, output: list[Tensor]) -> None: ...
def get_backward_stats(self) -> list[int]: ...
def _install_post_backward_futures(self, futures: list[Future]) -> None: ...
def _rebuild_buckets(self) -> bool: ...
def _get_zeros_like_grad_buckets(self) -> list[GradBucket]: ...
def _push_all_rebuilt_params(self) -> None: ...
def _set_forward_pass_work_handle(
self,
work: Work,
use_static_world_size: bool,
): ...
def _get_local_used_map(self) -> Tensor: ...
def _set_ddp_runtime_logging_sample_rate(self, sample_rate: int) -> None: ...
def _set_static_graph(self) -> None: ...
def _run_comm_hook(self, bucket: GradBucket) -> Future: ...
def set_logger(self, logger: Logger) -> None: ...
def _remove_autograd_hooks(self) -> None: ...
def _check_reducer_finalized(self) -> None: ...
def _set_sparse_metadata(self, global_unique_ids: dict[str, Tensor]) -> None: ...
def _reset_state(self) -> None: ...
def _update_process_group(self, new_process_group: ProcessGroup) -> None: ...
class DDPLoggingData:
strs_map: dict[str, str]
ints_map: dict[str, int]
class Logger:
def __init__(self, reducer: Reducer) -> None: ...
def set_construction_data_and_log(
self,
module_name: str,
device_ids: list[int],
output_device: int,
broadcast_buffers: bool,
has_sync_bn: bool,
static_graph: bool,
): ...
def set_runtime_stats_and_log(self) -> None: ...
def set_error_and_log(self, error: str) -> None: ...
def _get_ddp_logging_data(self) -> DDPLoggingData: ...
def _set_comm_hook_name(self, comm_hook: str) -> None: ...
def _set_uneven_input_join(self) -> None: ...
def _set_static_graph(self) -> None: ...
class _WorkerServer:
def __init__(self, socket_path: str) -> None: ...
def shutdown(self) -> None: ...
def get_debug_level(): ...
def set_debug_level(): ...
def set_debug_level_from_env(): ...
class DebugLevel(Enum):
OFF = ...
INFO = ...
DETAIL = ...
class ReduceOp:
def __init__(self, op: RedOpType) -> None: ...
SUM: RedOpType = ...
AVG: RedOpType = ...
PRODUCT: RedOpType = ...
MIN: RedOpType = ...
MAX: RedOpType = ...
BAND: RedOpType = ...
BOR: RedOpType = ...
BXOR: RedOpType = ...
PREMUL_SUM: RedOpType = ...
UNUSED: RedOpType = ...
# mypy error being ignored:
# Detected enum "torch._C._distributed_c10d.ReduceOp.RedOpType" in a type
# stub with zero members. There is a chance this is due to a recent change
# in the semantics of enum membership. If so, use `member = value` to mark
# an enum member, instead of `member: type`
class RedOpType(Enum): ... # type: ignore[misc]
class BroadcastOptions:
rootRank: int
rootTensor: int
timeout: timedelta
asyncOp: bool
class AllreduceOptions:
reduceOp: ReduceOp
timeout: timedelta
asyncOp: bool
sparseIndices: Optional[Tensor]
class AllreduceCoalescedOptions(AllreduceOptions): ...
class ReduceOptions:
reduceOp: ReduceOp
rootRank: int
rootTensor: int
timeout: timedelta
asyncOp: bool
class AllgatherOptions:
timeout: timedelta
asyncOp: bool
class GatherOptions:
rootRank: int
timeout: timedelta
asyncOp: bool
class ScatterOptions:
rootRank: int
timeout: timedelta
asyncOp: bool
class ReduceScatterOptions:
reduceOp: ReduceOp
timeout: timedelta
asyncOp: bool
class BarrierOptions:
device_ids: list[int]
device: torch.device
timeout: timedelta
asyncOp: bool
class AllToAllOptions:
timeout: timedelta
asyncOp: bool
class Store:
def set(self, key: str, value: str): ...
def get(self, key: str) -> bytes: ...
def add(self, key: str, value: int) -> int: ...
def check(self, keys: list[str]) -> bool: ...
def compare_set(
self,
key: str,
expected_value: str,
desired_value: str,
) -> bytes: ...
def delete_key(self, key: str) -> bool: ...
def num_keys(self) -> int: ...
def set_timeout(self, timeout: timedelta): ...
@overload
def wait(self, keys: list[str]): ...
@overload
def wait(self, keys: list[str], timeout: timedelta): ...
def queue_pop(self, key: str, block: bool = True) -> bytes: ...
def queue_push(self, key: str, value: Union[bytes, str]) -> None: ...
def queue_len(self, key: str) -> int: ...
class FileStore(Store):
def __init__(self, path: str, numWorkers: int = ...) -> None: ...
class HashStore(Store):
def __init__(self) -> None: ...
class TCPStore(Store):
def __init__(
self,
host_name: str,
port: int,
world_size: int | None = ...,
is_master: bool = ...,
timeout: timedelta = ...,
wait_for_workers: bool = ...,
multi_tenant: bool = ...,
master_listen_fd: int | None = ...,
use_libuv: bool | None = ...,
) -> None: ...
@property
def host(self) -> str: ...
@property
def port(self) -> int: ...
class PrefixStore(Store):
def __init__(self, prefix: str, store: Store) -> None: ...
@property
def underlying_store(self) -> Store: ...
class _ControlCollectives:
def barrier(self, key: str, timeout: timedelta, blocking: bool) -> None: ...
def broadcast_send(self, key: str, data: str, timeout: timedelta) -> None: ...
def broadcast_recv(self, key: str, timeout: timedelta) -> str: ...
def gather_send(self, key: str, data: str, timeout: timedelta) -> None: ...
def gather_recv(self, key: str, timeout: timedelta) -> str: ...
def scatter_send(self, key: str, data: str, timeout: timedelta) -> None: ...
def scatter_recv(self, key: str, timeout: timedelta) -> str: ...
def all_gather(self, key: str, data: str, timeout: timedelta) -> str: ...
def all_sum(self, key: str, data: int, timeout: timedelta) -> int: ...
class _StoreCollectives(_ControlCollectives):
def __init__(self, store: Store, rank: int, world_size: int) -> None: ...
class _DistributedBackendOptions:
def __init__(self) -> None: ...
@property
def store(self) -> Store: ...
@store.setter
def store(self, store: Store) -> None: ...
@property
def group_rank(self) -> int: ...
@group_rank.setter
def group_rank(self, rank: int) -> None: ...
@property
def group_size(self) -> int: ...
@group_size.setter
def group_size(self, size: int) -> None: ...
@property
def timeout(self) -> timedelta: ...
@timeout.setter
def timeout(self, timeout: timedelta) -> None: ...
@property
def group_id(self) -> str: ...
@group_id.setter
def group_id(self, group_id: str) -> None: ...
@property
def global_ranks_in_group(self) -> list[int]: ...
@global_ranks_in_group.setter
def global_ranks_in_group(self, ranks: list[int]) -> None: ...
class Work:
def is_completed(self) -> bool: ...
def is_success(self) -> bool: ...
def exception(self) -> Any: ...
def wait(self, timeout: timedelta = ...) -> bool: ...
def block_current_stream(self) -> None: ...
def get_future(self) -> Future: ...
def source_rank(self) -> int: ...
def _source_rank(self) -> int: ...
def result(self) -> list[Tensor]: ...
def synchronize(self) -> None: ...
def boxed(self) -> ScriptObject: ...
@staticmethod
def unbox(obj: ScriptObject) -> Work: ...
class Backend:
class Options:
def __init__(self, backend: str, timeout: timedelta = ...) -> None: ...
@property
def backend(self) -> str: ...
@property
def _timeout(self) -> timedelta: ...
@_timeout.setter
def _timeout(self, val: timedelta) -> None: ...
global_ranks_in_group: list[int]
group_name: str
def __init__(
self,
rank: int,
size: int,
) -> None: ...
@property
def supports_splitting(self) -> bool: ...
@property
def supports_coalescing(self) -> bool: ...
@property
def supports_time_estimate(self) -> bool: ...
def set_timeout(self, timeout: timedelta) -> None: ...
@property
def options(self) -> Options: ...
def rank(self) -> int: ...
def size(self) -> int: ...
def name(self) -> str: ...
def abort(self) -> None: ...
def shutdown(self) -> None: ...
def eager_connect_single_device(self, device: torch.device | None) -> None: ...
def _set_sequence_number_for_group(self) -> None: ...
def _set_default_timeout(self, timeout: timedelta) -> None: ...
def get_error(self) -> ErrorType: ...
def supports_tensor_alloc(self, device: torch.device) -> bool: ...
def allocate_tensor(
self,
size: int,
*,
dtype: torch.dtype,
device: torch.device,
) -> Tensor: ...
@property
def mem_allocator(self) -> Any: ...
class ProcessGroup:
class BackendType(Enum):
UNDEFINED = ...
GLOO = ...
NCCL = ...
UCC = ...
MPI = ...
XCCL = ...
CUSTOM = ...
def __init__(
self,
store: Store,
rank: int,
size: int,
) -> None: ...
def rank(self) -> int: ...
def size(self) -> int: ...
def get_group_store(self) -> Store: ...
def split_group(
self,
new_ranks: list[int],
timeout: Optional[timedelta] = None,
opts: Optional[Backend.Options] = None,
group_name: Optional[str] = None,
group_desc: Optional[str] = None,
) -> Optional[ProcessGroup]: ...
def merge_remote_group(
self,
store: Store,
size: int,
timeout: timedelta,
group_name: Optional[str] = None,
group_desc: Optional[str] = None,
) -> ProcessGroup: ...
def abort(self) -> None: ...
def set_timeout(self, timeout: timedelta) -> None: ...
def shutdown(self) -> None: ...
@overload
def broadcast(
self,
tensors: list[Tensor],
opts=...,
) -> Work: ...
@overload
def broadcast(
self,
tensor: Tensor,
root: int,
timeout: timedelta | None = None,
) -> Work: ...
@overload
def allreduce(
self,
tensors: list[Tensor],
opts: AllreduceOptions = ...,
) -> Work: ...
@overload
def allreduce(
self,
tensors: list[Tensor],
op=...,
timeout: timedelta | None = None,
) -> Work: ...
@overload
def allreduce(
self,
tensor: Tensor,
op=...,
timeout: timedelta | None = None,
) -> Work: ...
def allreduce_coalesced(
self,
tensors: list[Tensor],
opts=...,
) -> Work: ...
def reduce_scatter_tensor_coalesced(
self,
outputTensors: list[Tensor],
inputTensors: list[Tensor],
opts: ReduceScatterOptions | None = None,
) -> Work: ...
@overload
def reduce(
self,
tensors: list[Tensor],
opts=...,
) -> Work: ...
@overload
def reduce(
self,
tensor: Tensor,
root: int,
op=...,
timeout: timedelta | None = None,
) -> Work: ...
@overload
def allgather(
self,
output_tensors: list[list[Tensor]],
input_tensors: list[Tensor],
opts=...,
) -> Work: ...
@overload
def allgather(
self,
output_tensors: list[Tensor],
input_tensor: Tensor,
timeout: timedelta | None = None,
) -> Work: ...
def _allgather_base(
self,
output: Tensor,
input: Tensor,
opts=...,
) -> Work: ...
def allgather_coalesced(
self,
output_lists: list[list[Tensor]],
input_list: list[Tensor],
opts=...,
) -> Work: ...
def allgather_into_tensor_coalesced(
self,
output_lists: list[Tensor],
input_list: list[Tensor],
opts=...,
) -> Work: ...
@overload
def gather(
self,
output_tensors: list[list[Tensor]],
input_tensors: list[Tensor],
opts=...,
) -> Work: ...
@overload
def gather(
self,
output_tensors: list[Tensor],
input_tensor: Tensor,
root: int,
timeout: timedelta | None = None,
) -> Work: ...
@overload
def scatter(
self,
output_tensors: list[Tensor],
input_tensors: list[list[Tensor]],
opts=...,
) -> Work: ...
@overload
def scatter(
self,
output_tensor: Tensor,
input_tensors: list[Tensor],
root: int,
timeout: timedelta | None = None,
) -> Work: ...
@overload
def reduce_scatter(
self,
output_tensors: list[Tensor],
input_tensors: list[list[Tensor]],
opts=...,
) -> Work: ...
@overload
def reduce_scatter(
self,
output_tensors: Tensor,
input_tensor: list[Tensor],
op=...,
timeout: timedelta | None = None,
) -> Work: ...
def _reduce_scatter_base(
self,
outputTensor: Tensor,
inputTensor: Tensor,
opts: ReduceScatterOptions | None,
) -> Work: ...
@overload
def alltoall_base(
self,
output_tensor: Tensor,
input_tensor: Tensor,
output_split_sizes: list[int],
input_split_sizes: list[int],
opts=...,
) -> Work: ...
@overload
def alltoall_base(
self,
output: Tensor,
input: Tensor,
output_split_sizes: list[int],
input_split_sizes: list[int],
timeout: timedelta | None = None,
) -> Work: ...
@overload
def alltoall(
self,
output_tensor: list[Tensor],
input_tensor: list[Tensor],
opts=...,
) -> Work: ...
@overload
def alltoall(
self,
output: list[Tensor],
input: list[Tensor],
timeout: timedelta | None = None,
) -> Work: ...
def send(
self,
tensors: list[Tensor],
dstRank: int,
tag: int,
) -> Work: ...
def recv(
self,
tensors: list[Tensor],
srcRank: int,
tag: int,
) -> Work: ...
def recv_anysource(self, tensors: list[Tensor], tag: int) -> Work: ...
@overload
def barrier(self, opts=...) -> Work: ...
@overload
def barrier(self, timeout: timedelta | None = None) -> Work: ...
def boxed(self) -> ScriptObject: ...
@staticmethod
def unbox(obj: ScriptObject) -> ProcessGroup: ...
def _start_coalescing(self, device: torch.device) -> None: ...
def _end_coalescing(self, device: torch.device) -> Work: ...
def _get_backend_name(self) -> str: ...
def _backend_id(self, backend_type: BackendType) -> int: ...
@property
def _device_types(self) -> list[torch.device]: ...
def _get_backend(self, device: torch.device) -> Backend: ...
def _set_default_backend(self, backend_type: BackendType) -> None: ...
def _register_backend(
self,
device: torch.device,
backend_type: BackendType,
backend: Backend | None,
) -> None: ...
def _set_group_name(self, name: str) -> None: ...
def _set_group_desc(self, desc: str) -> None: ...
def name(self) -> str: ...
def _has_hooks(self) -> bool: ...
def _wait_for_pending_works(self) -> None: ...
def _set_sequence_number_for_group(self) -> None: ...
@property
def bound_device_id(self) -> torch.device | None: ...
@bound_device_id.setter
def bound_device_id(self, device: torch.device | None) -> None: ...
@property
def group_name(self) -> str: ...
@property
def group_desc(self) -> str: ...
class FakeProcessGroup(Backend):
def __init__(self, rank: int, world_size: int) -> None: ...
class FakeWork(Work):
seq_id: int
def __init__(self) -> None: ...
def wait(self, timeout: timedelta = ...) -> bool: ...
def getFuture(self) -> Future: ...
class ProcessGroupGloo(Backend):
class Device: ...
class Options(Backend.Options):
devices: list[ProcessGroupGloo.Device]
threads: int
def __init__(self): ...
def __init__(
self,
store: Store,
rank: int,
size: int,
timeout: timedelta,
) -> None: ...
@staticmethod
def create_device(hostname="", interface="", lazy_init=None) -> Device: ...
@staticmethod
def create_default_device(lazy_init=None) -> Device: ...
def _set_default_timeout(self, timeout) -> None: ...
@property
def options(self) -> Options: ... # type: ignore[override]
class _ProcessGroupWrapper(Backend):
def __init__(self, pg: Backend, gloo_pg: ProcessGroupGloo) -> None: ...
wrapped_pg: Backend
class ErrorType(Enum):
SUCCESS = ...
TIMEOUT = ...
COMM_ERROR = ...
REMOTE_ERROR = ...
class ProcessGroupNCCL(Backend):
class NCCLConfig:
blocking: int
cga_cluster_size: int
min_ctas: int
max_ctas: int
def unsafe_get_ptr(self) -> int: ...
class Options(Backend.Options):
config: ProcessGroupNCCL.NCCLConfig
is_high_priority_stream: bool
split_from: ProcessGroupNCCL
split_color: int
def __init__(self, is_high_priority_stream: bool = False): ...
def __init__(
self,
store: Store,
rank: int,
size: int,
options: Options,
) -> None: ...
def _group_start(self) -> None: ...
def _group_end(self) -> None: ...
def _start_time_estimate(self) -> None: ...
def _end_time_estimate(self) -> float: ...
def _set_default_timeout(self, timeout) -> None: ...
def perform_nocolor_split(self, device: torch.device) -> None: ...
def register_mem_pool(self, pool: torch.cuda.MemPool) -> None: ...
def deregister_mem_pool(self, pool: torch.cuda.MemPool) -> None: ...
def comm_split_count(self) -> int: ...
def _add_ephemeral_timeout(self, timeout: timedelta) -> None: ...
def abort(self) -> None: ...
def _is_initialized(self) -> bool: ...
@property
def uid(self) -> int: ...
@property
def options(self) -> Options: ... # type: ignore[override]
@staticmethod
def get_build_nccl_version(self) -> tuple[int, int, int]: ...
@staticmethod
def get_runtime_nccl_version(self) -> tuple[int, int, int]: ...
class ProcessGroupUCC(Backend):
def __init__(
self,
store: Store,
rank: int,
size: int,
timeout: timedelta,
) -> None: ...
class ProcessGroupMPI(Backend):
def __init__(
self,
rank: int,
size: int,
pgComm: int,
) -> None: ...
@staticmethod
def create(ranks: list[int]) -> ProcessGroupMPI: ...
def _compute_bucket_assignment_by_size(
tensors: list[Tensor],
bucket_size_limits: list[int],
expect_sparse_gradient: list[bool] = ...,
tensor_indices: list[int] = ...,
) -> tuple[list[list[int]], list[int]]: ...
def _broadcast_coalesced(
process_group: ProcessGroup,
tensors: list[Tensor],
buffer_size: int,
src: int,
): ...
def _test_python_store(store: Store): ...
def _verify_params_across_processes(
process_group: ProcessGroup,
params: list[Tensor],
logger: Logger | None,
): ...
def _make_nccl_premul_sum(factor: float | list[Tensor]) -> ReduceOp: ...
def _register_process_group(
group_name: str,
process_group: ProcessGroup,
) -> None: ...
def _resolve_process_group(group_name: str) -> ProcessGroup: ...
def _register_work(tensor: torch.Tensor, work: Work) -> ProcessGroup: ...
def _get_work_registry_size() -> int: ...
def _set_allow_inflight_collective_as_graph_input(
value: bool,
) -> None: ...
def _allow_inflight_collective_as_graph_input() -> bool: ...
def _unregister_all_process_groups() -> None: ...
def _unregister_process_group(group_name: str) -> None: ...
# Initializes the device state in CUmodule so that its able to perform NVSHMEM
# operations. CUmodule is a pointer to a CUDA module, carried by a int64 in
# Python. At C++ interface, it is converted to a uintptr_t.
def _nvshmemx_cumodule_init(module: int) -> None: ...
# Check if NVSHMEM is available on current system.
def _is_nvshmem_available() -> bool: ...
class _SymmetricMemory:
@staticmethod
def set_group_info(
group_name: str,
rank: int,
world_size: int,
store: Store,
) -> None: ...
@staticmethod
def empty_strided_p2p(
size: torch.types._size,
stride: torch.types._size,
dtype: torch.dtype,
device: torch.device,
group_name: str | None = None,
alloc_id: int | None = None,
) -> torch.Tensor: ...
@staticmethod
def has_multicast_support(
device_type: DeviceType,
device_idx: int,
) -> bool: ...
# Set Symmetric Memory allocation backend.
@staticmethod
def set_backend(name: str) -> None: ...
@staticmethod
def get_backend(device: torch.device) -> Optional[str]: ...
@staticmethod
def get_mempool_allocator(device: torch.device) -> Any: ...
@property
def rank(self) -> int: ...
@property
def world_size(self) -> int: ...
@staticmethod
def rendezvous(
tensor: torch.Tensor, group_name: str | None = None
) -> _SymmetricMemory: ...
def get_buffer(
self,
rank: int,
sizes: torch.types._size,
dtype: torch.dtype,
storage_offset: int | None = 0,
) -> torch.Tensor: ...
def get_signal_pad(
self,
rank: int,
sizes: torch.types._size = [],
dtype: torch.dtype | None = None,
storage_offset: int | None = 0,
) -> torch.Tensor: ...
def barrier(self, channel: int = 0, timeout_ms: int = 0) -> None: ...
def put_signal(
self,
dst_rank: int,
channel: int = 0,
timeout_ms: int = 0,
) -> None: ...
def wait_signal(
self,
src_rank: int,
channel: int = 0,
timeout_ms: int = 0,
) -> None: ...
def get_remote_tensor(
self,
peer: int,
sizes: torch.types._size,
dtype: torch.dtype,
) -> torch.Tensor: ...
@staticmethod
def memset32(
tensor: torch.Tensor, offset: int, val: int, count: int = 1
) -> torch.Tensor: ...
@staticmethod
def stream_write_value32(
tensor: torch.Tensor, offset: int, val: int
) -> torch.Tensor: ...
@property
def buffer_ptrs(self) -> list[int]: ...
@property
def buffer_ptrs_dev(self) -> int: ...
@property
def signal_pad_ptrs(self) -> list[int]: ...
@property
def signal_pad_ptrs_dev(self) -> int: ...
@property
def multicast_ptr(self) -> int: ...
@property
def buffer_size(self) -> int: ...
@property
def signal_pad_size(self) -> int: ...
class ProcessGroupXCCL(Backend):
class Options(Backend.Options):
def __init__(self): ...
def __init__(
self,
store: Store,
rank: int,
size: int,
options: Options,
) -> None: ...
@property
def options(self) -> Options: ... # type: ignore[override]
def _set_process_group(pg: ProcessGroup) -> None: ...
def _current_process_group() -> ProcessGroup: ...