mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/105928 Approved by: https://github.com/albanD
33 lines
883 B
Python
33 lines
883 B
Python
import torch
|
|
import torch.utils.benchmark as benchmark
|
|
|
|
MEMO = {}
|
|
|
|
|
|
def create_nested_dict_type(layers):
|
|
if layers == 0:
|
|
return torch._C.StringType.get()
|
|
if layers not in MEMO:
|
|
less_nested = create_nested_dict_type(layers - 1)
|
|
result = torch._C.DictType(
|
|
torch._C.StringType.get(), torch._C.TupleType([less_nested, less_nested])
|
|
)
|
|
MEMO[layers] = result
|
|
return MEMO[layers]
|
|
|
|
|
|
nesting_levels = (1, 3, 5, 10)
|
|
types = (reasonable, medium, big, huge) = [
|
|
create_nested_dict_type(x) for x in nesting_levels
|
|
]
|
|
|
|
timers = [
|
|
benchmark.Timer(stmt="x.annotation_str", globals={"x": nested_type})
|
|
for nested_type in types
|
|
]
|
|
|
|
for nesting_level, typ, timer in zip(nesting_levels, types, timers):
|
|
print("Nesting level:", nesting_level)
|
|
print("output:", typ.annotation_str[:70])
|
|
print(timer.blocked_autorange())
|