pytorch/benchmarks/operator_benchmark/pt/split_test.py
Edward Z. Yang dd3a77bc96 Apply UFMT to all files in benchmarks/ (#105928)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105928
Approved by: https://github.com/albanD
2023-07-26 01:18:48 +00:00

45 lines
1.0 KiB
Python

import torch
import operator_benchmark as op_bench
"""Microbenchmarks for Split operator"""
# Configs for PT Split operator
split_configs_short = op_bench.config_list(
attr_names=["M", "N", "parts"],
attrs=[
[8, 8, 2],
[256, 512, 2],
[512, 512, 2],
],
cross_product_configs={
"device": ["cpu", "cuda"],
},
tags=["short"],
)
split_configs_long = op_bench.cross_product_configs(
M=[128, 1024], N=[128, 1024], parts=[2, 4], device=["cpu", "cuda"], tags=["long"]
)
class SplitBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, parts, device):
self.inputs = {
"input": torch.rand(M, N, device=device),
"split_size": int(M * N / parts),
}
self.set_module_name("split")
def forward(self, input, split_size: int):
return torch.split(input, split_size)
op_bench.generate_pt_test(split_configs_short + split_configs_long, SplitBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()