pytorch/caffe2/python/layers/dot_product.py
Xianjie Chen a597c7b167 implement sparse nn using layers
Summary:
- It's first prototype that includes simple unary test.
- will probably need to iterate based on it to include more arches that we see promising offline results

Differential Revision: D4208336

fbshipit-source-id: 5b2d2a5a0274a9dcad0fb169e43e78aa9d9a704d
2016-11-29 15:18:38 -08:00

38 lines
1.3 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import (
ModelLayer,
)
class DotProduct(ModelLayer):
def __init__(self, model, input_record, name='dot_product', **kwargs):
super(DotProduct, self).__init__(model, name, input_record, **kwargs)
assert isinstance(input_record, schema.Struct),\
"Incorrect input type. Excpected Struct, but received: {0}".\
format(input_record)
assert len(input_record.get_children()) == 2, (
"DotProduct accept 2 inputs")
assert len(set(input_record.field_types())) == 1, (
"Inputs should be of the same field type")
for field_name, field_type in input_record.fields.items():
assert isinstance(field_type, schema.Scalar),\
"Incorrect input type. Excpected Scalar, but received: {0}".\
format(field_type)
self.output_schema = schema.Scalar(
(input_record.field_types()[0].base, ()),
core.ScopedBlobReference(model.net.NextName(self.name + '_output')))
def add_ops(self, net):
net.DotProduct(
self.input_record.field_blobs(),
self.output_schema(),
)