mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: This is a bit large diff, sorry about it. It includes basic shape and type inference functionality, based on YQ's Schema scaffolding. I added some helper functions to make it easier to write simple translations. Bigger refactoring was needed for ConvPoolBase so that we could use the shape inference already there in the schema. I annotated enough operators to be able to infer forward-pass of shapes for basic convnet, and added test for that. I intend to bootcamp some annotations and annotate enough to handle Resnets fully. Need to think about gradients, if they could be annotated in an easier way. Only shapes are now exposed to Python, types will follow later. Also the inference is not called yet anywhere but unit test. Also I am not sure if everything is in the best location in the code, but shouldn't be hard to move stuff around. Reviewed By: dzhulgakov Differential Revision: D4436818 fbshipit-source-id: eebee5937ccc9ac09c245465302388a1fae6933c
281 lines
11 KiB
Python
281 lines
11 KiB
Python
import unittest
|
|
|
|
import numpy as np
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, workspace, test_util, cnn
|
|
|
|
|
|
class TestScopes(test_util.TestCase):
|
|
def testBlobReferenceIsIndependentFromNameScope(self):
|
|
blob_v = core.BlobReference("v")
|
|
with core.NameScope("foo"):
|
|
blob_w = core.BlobReference("w")
|
|
with core.NameScope("bar"):
|
|
blob_x = core.BlobReference("x")
|
|
self.assertEqual(str(blob_v), "v")
|
|
self.assertEqual(str(blob_w), "w")
|
|
self.assertEqual(str(blob_x), "x")
|
|
|
|
def testNameScopeWithOp(self):
|
|
global_x = core.BlobReference("x")
|
|
global_y = core.BlobReference("y")
|
|
with core.NameScope("foo"):
|
|
# Raw strings should have namescope prepended.
|
|
op = core.CreateOperator("Relu", "x", "y")
|
|
self.assertEqual(len(op.input), 1)
|
|
self.assertEqual(op.input[0], "foo/x")
|
|
self.assertEqual(len(op.output), 1)
|
|
self.assertEqual(op.output[0], "foo/y")
|
|
# BlobReferences should not.
|
|
op = core.CreateOperator("Relu", global_x, global_y)
|
|
self.assertEqual(len(op.input), 1)
|
|
self.assertEqual(op.input[0], "x")
|
|
self.assertEqual(len(op.output), 1)
|
|
self.assertEqual(op.output[0], "y")
|
|
|
|
def testNameScopeWithReset(self):
|
|
with core.NameScope("foo"):
|
|
# foo/
|
|
op = core.CreateOperator("Relu", "x", "y")
|
|
self.assertEqual(len(op.input), 1)
|
|
self.assertEqual(op.input[0], "foo/x")
|
|
self.assertEqual(len(op.output), 1)
|
|
self.assertEqual(op.output[0], "foo/y")
|
|
with core.NameScope("bar"):
|
|
# foo/bar/
|
|
op = core.CreateOperator("Relu", "x", "y")
|
|
self.assertEqual(len(op.input), 1)
|
|
self.assertEqual(op.input[0], "foo/bar/x")
|
|
self.assertEqual(len(op.output), 1)
|
|
self.assertEqual(op.output[0], "foo/bar/y")
|
|
# Back to foo/
|
|
op = core.CreateOperator("Relu", "x", "y")
|
|
self.assertEqual(len(op.input), 1)
|
|
self.assertEqual(op.input[0], "foo/x")
|
|
self.assertEqual(len(op.output), 1)
|
|
self.assertEqual(op.output[0], "foo/y")
|
|
with core.NameScope("bar", reset=True):
|
|
# bar/
|
|
op = core.CreateOperator("Relu", "x", "y")
|
|
self.assertEqual(len(op.input), 1)
|
|
self.assertEqual(op.input[0], "bar/x")
|
|
self.assertEqual(len(op.output), 1)
|
|
self.assertEqual(op.output[0], "bar/y")
|
|
# Back to foo/
|
|
op = core.CreateOperator("Relu", "x", "y")
|
|
self.assertEqual(len(op.input), 1)
|
|
self.assertEqual(op.input[0], "foo/x")
|
|
self.assertEqual(len(op.output), 1)
|
|
self.assertEqual(op.output[0], "foo/y")
|
|
|
|
def testDeviceScope(self):
|
|
# No device
|
|
op = core.CreateOperator("Relu", "x", "y")
|
|
self.assertFalse(op.HasField('device_option'))
|
|
# explicitly setting a device
|
|
device_option = caffe2_pb2.DeviceOption()
|
|
device_option.device_type = caffe2_pb2.CUDA
|
|
device_option.cuda_gpu_id = 1
|
|
op = core.CreateOperator("Relu", "x", "y", device_option=device_option)
|
|
self.assertTrue(op.HasField('device_option'))
|
|
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
|
|
self.assertEqual(op.device_option.cuda_gpu_id, 1)
|
|
with core.DeviceScope(device_option):
|
|
# from device scope
|
|
op = core.CreateOperator("Relu", "x", "y")
|
|
self.assertTrue(op.HasField('device_option'))
|
|
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
|
|
self.assertEqual(op.device_option.cuda_gpu_id, 1)
|
|
# from an overridden device option
|
|
override_device = caffe2_pb2.DeviceOption()
|
|
override_device.device_type = caffe2_pb2.CPU
|
|
op = core.CreateOperator(
|
|
"Relu", "x", "y", device_option=override_device)
|
|
self.assertTrue(op.HasField('device_option'))
|
|
self.assertEqual(op.device_option.device_type, caffe2_pb2.CPU)
|
|
# back from normal: no device
|
|
op = core.CreateOperator("Relu", "x", "y")
|
|
self.assertFalse(op.HasField('device_option'))
|
|
device_option = caffe2_pb2.DeviceOption()
|
|
|
|
def testNameAndDeviceScopeTogether(self):
|
|
device_option = caffe2_pb2.DeviceOption()
|
|
device_option.device_type = caffe2_pb2.CUDA
|
|
device_option.cuda_gpu_id = 1
|
|
with core.DeviceScope(device_option):
|
|
with core.NameScope("foo"):
|
|
op = core.CreateOperator("Relu", "x", "y")
|
|
self.assertTrue(op.HasField('device_option'))
|
|
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
|
|
self.assertEqual(op.device_option.cuda_gpu_id, 1)
|
|
self.assertEqual(len(op.input), 1)
|
|
self.assertEqual(op.input[0], "foo/x")
|
|
self.assertEqual(len(op.output), 1)
|
|
self.assertEqual(op.output[0], "foo/y")
|
|
|
|
|
|
class TestCloneNet(test_util.TestCase):
|
|
def testPartialClone(self):
|
|
params = core.Net('params')
|
|
p1 = params.ConstantFill([], ['p1'])
|
|
workspace.CreateNet(params)
|
|
workspace.RunNetOnce(params)
|
|
|
|
n = core.Net('original')
|
|
a1 = n.AddExternalInput('a1')
|
|
a2 = n.AddExternalInput('a2')
|
|
b1, b2 = n.Concat([a1, a2], ['b1', 'b2'], axis=0)
|
|
c1 = n.Sum([b1, p1], ['c1'])
|
|
c2 = n.Sum([b2], ['c2'])
|
|
d = n.Sum([c1, c2], ['d'])
|
|
|
|
# test that gradient ops are ignored when partial-cloning
|
|
n.AddGradientOperators([d])
|
|
|
|
# test some in-place ops
|
|
k = n.Sum([p1], ['k'])
|
|
e = n.Sum([d], ['e'])
|
|
e = n.Sum([e, k], [e])
|
|
e = n.Sum([e], [e])
|
|
f = n.Sum(e, ['f'])
|
|
|
|
def net_assert(net, num_ops, inputs, outputs, internals):
|
|
self.assertEqual(len(net.Proto().op), num_ops)
|
|
self.assertEqual(set(net.Proto().external_input), inputs)
|
|
self.assertEqual(set(net.Proto().external_output), outputs)
|
|
all_blobs = set(net.Proto().external_input)
|
|
all_blobs |= set(net.Proto().external_output)
|
|
for op in net.Proto().op:
|
|
all_blobs |= set(op.input) | set(op.output)
|
|
self.assertEqual(all_blobs, inputs | outputs | internals)
|
|
# create net to make sure its valid
|
|
for input in inputs:
|
|
workspace.FeedBlob(input, np.array([]))
|
|
workspace.CreateNet(net)
|
|
|
|
n2, (d22, ) = n.ClonePartial('f1', {a1: 'a11', a2: 'a22'}, [d])
|
|
net_assert(
|
|
n2, 4, {'p1', 'a11', 'a22'}, {'f1/d'},
|
|
{'f1/b1', 'f1/b2', 'f1/c1', 'f1/c2', 'p1'})
|
|
self.assertTrue(isinstance(d22, core.BlobReference))
|
|
self.assertEqual(d22.Net(), n2)
|
|
self.assertEqual(str(d22), 'f1/d')
|
|
|
|
n3, (d22, ) = n.ClonePartial('f2', [b1, b2], [d])
|
|
net_assert(
|
|
n3, 3, {'p1', 'b1', 'b2'}, {'f2/d'}, {'f2/c1', 'f2/c2', 'p1'})
|
|
self.assertEqual(str(d22), 'f2/d')
|
|
|
|
n4, (c22, ) = n.ClonePartial('f3', [b1], [c1])
|
|
net_assert(n4, 1, {'p1', 'b1'}, {'f3/c1'}, {'p1'})
|
|
self.assertEqual(str(c22), 'f3/c1')
|
|
|
|
n5, (c11, c22) = n.ClonePartial('f4', [b1, b2], [c1, c2])
|
|
net_assert(n5, 2, {'p1', 'b1', 'b2'}, {'f4/c1', 'f4/c2'}, {'p1'})
|
|
self.assertEqual(str(c11), 'f4/c1')
|
|
self.assertEqual(str(c22), 'f4/c2')
|
|
|
|
with self.assertRaises(AssertionError):
|
|
n.ClonePartial('f4', [a1, a2, c2], [d])
|
|
|
|
n6, (e22, ) = n.ClonePartial('f5', [d], [e])
|
|
net_assert(n6, 4, {'p1', 'd'}, {'f5/e'}, {'f5/k', 'p1'})
|
|
self.assertEqual(str(e22), 'f5/e')
|
|
|
|
n8, (e22, f22) = n.ClonePartial('f7', [d], [e, f])
|
|
net_assert(n8, 5, {'p1', 'd'}, {'f7/e', 'f7/f'}, {'p1', 'f7/k'})
|
|
self.assertEqual(str(e22), 'f7/e')
|
|
self.assertEqual(str(f22), 'f7/f')
|
|
|
|
params._CheckLookupTables()
|
|
n._CheckLookupTables()
|
|
|
|
|
|
class TestCreateOperator(test_util.TestCase):
|
|
def testCreate(self):
|
|
device_option = caffe2_pb2.DeviceOption()
|
|
device_option.device_type = caffe2_pb2.CUDA
|
|
device_option.cuda_gpu_id = 1
|
|
op = core.CreateOperator(
|
|
"Ludicrous", "x", "y", name="ludicrous",
|
|
control_input="z", device_option=device_option,
|
|
engine="WARP", arg1=1, arg2="2", arg3=[1, 2, 3])
|
|
self.assertEqual(op.type, "Ludicrous")
|
|
self.assertEqual(op.name, "ludicrous")
|
|
self.assertEqual(op.engine, "WARP")
|
|
self.assertEqual(len(op.input), 1)
|
|
self.assertEqual(op.input[0], "x")
|
|
self.assertEqual(len(op.output), 1)
|
|
self.assertEqual(op.output[0], "y")
|
|
self.assertEqual(len(op.control_input), 1)
|
|
self.assertEqual(op.control_input[0], "z")
|
|
self.assertTrue(op.HasField('device_option'))
|
|
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
|
|
self.assertEqual(op.device_option.cuda_gpu_id, 1)
|
|
self.assertTrue(len(op.arg), 3)
|
|
self.assertEqual(op.arg[0].name, "arg1")
|
|
self.assertEqual(op.arg[1].name, "arg2")
|
|
self.assertEqual(op.arg[2].name, "arg3")
|
|
self.assertEqual(op.arg[0].i, 1)
|
|
self.assertEqual(op.arg[1].s, "2")
|
|
self.assertEqual(list(op.arg[2].ints), [1, 2, 3])
|
|
|
|
def testCreateWithNoneKwarg(self):
|
|
with self.assertRaises(ValueError):
|
|
core.CreateOperator("Ludicrous", "x", "y", arg1=None)
|
|
|
|
|
|
class TestAutoNaming(test_util.TestCase):
|
|
"""
|
|
Test that operators are named with different names, and that automatically
|
|
named blob names don't clash intra or inter networks.
|
|
"""
|
|
|
|
def test_auto_naming(self):
|
|
a = core.Net('net')
|
|
b = core.Net('net')
|
|
self.assertNotEqual(a.Proto().name, b.Proto().name)
|
|
a_in1 = a.AddExternalInput('a')
|
|
b_in1 = b.AddExternalInput('b')
|
|
all_outputs_single = []
|
|
all_outputs_list = []
|
|
|
|
def add_ops():
|
|
all_outputs_single.append(a.Sum([a_in1, a_in1]))
|
|
all_outputs_single.append(a.Sum([a_in1, a_in1]))
|
|
all_outputs_single.append(b.Sum([b_in1, b_in1]))
|
|
all_outputs_single.append(b.Sum([b_in1, b_in1]))
|
|
all_outputs_list.append(a.Sum([a_in1, a_in1], outputs=2))
|
|
all_outputs_list.append(a.Sum([a_in1, a_in1], outputs=2))
|
|
all_outputs_list.append(b.Sum([b_in1, b_in1], outputs=2))
|
|
all_outputs_list.append(b.Sum([b_in1, b_in1], outputs=2))
|
|
|
|
add_ops()
|
|
with core.NameScope('n1'):
|
|
add_ops()
|
|
|
|
# Force reset of lookup tables
|
|
dummy = a.Proto().name
|
|
|
|
with core.NameScope('n2'):
|
|
add_ops()
|
|
|
|
all_outputs = []
|
|
for s in all_outputs_single:
|
|
all_outputs.append(str(s))
|
|
for l in all_outputs_list:
|
|
for o in l:
|
|
all_outputs.append(str(o))
|
|
|
|
for i, o1 in enumerate(all_outputs):
|
|
for j, o2 in enumerate(all_outputs):
|
|
if i != j:
|
|
self.assertNotEqual(str(o1), str(o2))
|
|
|
|
a._CheckLookupTables()
|
|
b._CheckLookupTables()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|