pytorch/test/inductor/test_mkldnn_pattern_matcher.py
haozhe.zhu dbf39a6e63 [inductor] fix linear_add_bias path (#127597)
Previous the `linear_add_bias` path do not work.
This PR is to fix it and add more ut with it.

**TestPlan**
```
python test/inductor/test_mkldnn_pattern_matcher.py -k test_linear_add_bias
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127597
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-06-04 00:39:01 +00:00

2834 lines
98 KiB
Python

# Owner(s): ["oncall: cpu inductor"]
import contextlib
import copy
import itertools
import unittest
import torch
import torch.ao.quantization.quantizer.x86_inductor_quantizer as xiq
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._export import capture_pre_autograd_graph
from torch._inductor import config, metrics
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import run_and_get_code
from torch.ao.quantization.quantize_pt2e import (
convert_pt2e,
prepare_pt2e,
prepare_qat_pt2e,
)
from torch.ao.quantization.quantizer.x86_inductor_quantizer import X86InductorQuantizer
from torch.nn import functional as F
from torch.testing._internal.common_quantization import (
skipIfNoDynamoSupport,
skipIfNoONEDNN,
skipIfNoONEDNNBF16,
)
from torch.testing._internal.common_utils import IS_LINUX, skipIfRocm, TEST_MKL
from torch.testing._internal.inductor_utils import _check_has_dynamic_shape, HAS_CPU
# The dict value is match_nodes(computation_op+unary_op)
unary_list = {
torch.nn.ReLU(): 2,
torch.nn.Sigmoid(): 2,
torch.nn.Tanh(): 2,
torch.nn.Hardswish(): 6,
torch.nn.LeakyReLU(0.1, inplace=False): 4,
torch.nn.Hardtanh(min_val=-0.5, max_val=4, inplace=False): 3,
torch.nn.Hardtanh(min_val=-0.5, max_val=float("inf"), inplace=False): 3,
torch.nn.GELU(approximate="none"): 6,
torch.nn.GELU(approximate="tanh"): 10,
torch.nn.ReLU6(): 3,
torch.nn.SiLU(): 3,
torch.nn.Hardsigmoid(): 5,
}
non_decomposed_unary_list = [
torch.nn.ReLU,
torch.nn.Sigmoid,
torch.nn.Tanh,
]
# The dict value is (match_count, match_nodes, inplace)
binary_list = {
lambda x, y: torch.add(x, y): (1, 2, False), # call_function
lambda x, y: torch.add(y, x): (1, 2, False), # call_function
lambda x, y: x.add(y): (1, 2, False), # call_method
lambda x, y: x.add_(y): (1, 2, True), # call_method
lambda x, y: torch.sub(x, y): (1, 2, False), # call_function
lambda x, y: x.sub(y): (1, 2, False), # call_method
lambda x, y: x.sub_(y): (1, 2, True), # call_method
}
quantization_add_fn_list = [
lambda x, y: torch.add(x, y),
lambda x, y: x.add(y),
]
quantization_inplace_add_fn_list = [
lambda x, y: x.add_(y),
]
def get_default_quantizer(is_qat, is_dynamic):
quantizer = X86InductorQuantizer()
quantizer.set_global(
xiq.get_default_x86_inductor_quantization_config(
is_qat=is_qat, is_dynamic=is_dynamic
)
)
return quantizer
def cal_conv_generated_kernel_number(mod, input, dtype):
# this function is to decide how many kernels are generated
# while testing conv2d/3d/deconv2d
# the assumption is:
# (1) There will be a to_dtype kernel for input for lp
# (2) inductor always use channe_last format, there will
# be a to_channel_last format for input
# (3) to_dtype and to_channel_last for input can be fused
# (4) inductor always get channel last format from mkldnn_conv_pointwise(binary),
# and force the output to have same stride with eager.
# So there will be a to_contiguous for output if eager output is contiguouse
mod = copy.deepcopy(mod)
input = input.clone()
if dtype == torch.float32:
maybe_autocast = contextlib.nullcontext()
else:
maybe_autocast = torch.cpu.amp.autocast(dtype=dtype)
with torch.no_grad(), maybe_autocast:
output = mod(input)
input_kernel, output_kernel = 0, 0
if (
input.is_contiguous(memory_format=torch.contiguous_format)
or dtype != torch.float32
):
input_kernel = 1
if output.is_contiguous(memory_format=torch.contiguous_format):
output_kernel = 1
return input_kernel + output_kernel
@config.patch({"freezing": True})
class TestPatternMatcherBase(TestCase):
def _check_unary_is_decomposed(self, unary_fn):
return not any(
isinstance(unary_fn, fn)
for fn in [torch.nn.ReLU, torch.nn.Sigmoid, torch.nn.Tanh]
)
def _clone_inputs(self, inputs):
def clone(x):
if not isinstance(x, torch.Tensor):
return x
return x.clone()
return tuple(clone(x) for x in inputs)
def _generate_qdq_quantized_model(
self, mod, inputs, is_qat=False, is_dynamic=False, quantizer=None
):
maybe_no_grad = contextlib.nullcontext() if is_qat else torch.no_grad()
with maybe_no_grad:
export_model = capture_pre_autograd_graph(
mod,
inputs,
)
quantizer = (
quantizer if quantizer else get_default_quantizer(is_qat, is_dynamic)
)
prepare_model = (
prepare_qat_pt2e(export_model, quantizer)
if is_qat
else prepare_pt2e(export_model, quantizer)
)
prepare_model(*inputs)
convert_model = convert_pt2e(prepare_model)
torch.ao.quantization.move_exported_model_to_eval(convert_model)
return convert_model
def _test_common(
self,
mod,
inputs,
matcher_count=None,
matcher_nodes=None,
atol=1e-5,
rtol=1.3e-6,
check_autocast=torch.float32,
check_quantization=False,
is_qat=False,
matcher_check_fn=None,
dtype=None,
is_dynamic=False,
quantizer=None,
):
counters.clear()
torch._dynamo.reset()
assert matcher_check_fn is not None or (
matcher_count is not None and matcher_nodes is not None
)
if (
check_autocast == torch.bfloat16
and torch.ops.mkldnn._is_mkldnn_bf16_supported()
):
maybe_autocast = torch.cpu.amp.autocast(dtype=torch.bfloat16)
atol, rtol = 1e-2, 1e-2
elif (
check_autocast == torch.float16
and torch.ops.mkldnn._is_mkldnn_fp16_supported()
):
maybe_autocast = torch.cpu.amp.autocast(dtype=torch.float16)
atol, rtol = 1e-2, 1e-2
else:
assert check_autocast == torch.float32
maybe_autocast = contextlib.nullcontext()
if check_quantization:
convert_model = self._generate_qdq_quantized_model(
mod, inputs, is_qat, is_dynamic, quantizer
)
with torch.no_grad(), maybe_autocast:
_ = torch.compile(convert_model)(*inputs)
if matcher_count is not None:
self.assertEqual(
counters["inductor"]["pattern_matcher_count"], matcher_count
)
if matcher_nodes is not None:
self.assertEqual(
counters["inductor"]["pattern_matcher_nodes"],
matcher_nodes,
)
if matcher_check_fn is not None:
matcher_check_fn()
else:
with torch.no_grad(), maybe_autocast:
clone_inputs = self._clone_inputs(inputs)
expected = mod(*inputs)
actual = torch.compile(mod)(*clone_inputs)
torch.testing.assert_close(actual, expected, atol=atol, rtol=rtol)
if matcher_count is not None:
self.assertEqual(
counters["inductor"]["pattern_matcher_count"], matcher_count
)
if matcher_nodes is not None:
self.assertEqual(
counters["inductor"]["pattern_matcher_nodes"],
matcher_nodes,
)
if matcher_check_fn is not None:
matcher_check_fn()
def _test_code_common(
self,
mod,
inputs,
include_ops,
exclude_ops,
atol=1e-5,
rtol=1.3e-6,
check_quantization=False,
check_dynamic=None,
):
with torch.no_grad():
clone_inputs = self._clone_inputs(inputs)
if check_quantization:
mod = self._generate_qdq_quantized_model(mod, inputs)
expected = mod(*inputs)
actual, (source_code,) = run_and_get_code(
torch.compile(mod, fullgraph=True, dynamic=check_dynamic),
*clone_inputs,
)
for op in include_ops:
self.assertIn(op, source_code)
for op in exclude_ops:
self.assertNotIn(op, source_code)
if check_dynamic is not None:
_check_has_dynamic_shape(self, source_code)
if not check_quantization:
# Skip due to reduce range setting for Quantization on preCI system.
torch.testing.assert_close(actual, expected, atol=atol, rtol=rtol)
class TestPatternMatcher(TestPatternMatcherBase):
def _test_conv_unary_cpu_base(self, dim=4):
assert dim == 4 or dim == 5
class M(torch.nn.Module):
def __init__(
self,
unary_fn,
**kwargs,
):
super().__init__()
if dim == 4:
self.conv = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1)
else:
self.conv = torch.nn.Conv3d(3, 16, kernel_size=3, stride=1)
self.unary_fn = unary_fn
def forward(self, x):
x = self.conv(x)
return self.unary_fn(x)
dtypes = [
torch.float,
]
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
dtypes.append(torch.bfloat16)
if torch.ops.mkldnn._is_mkldnn_fp16_supported():
dtypes.append(torch.float16)
cl_format = torch.channels_last if dim == 4 else torch.channels_last_3d
options = itertools.product(
unary_list.keys(),
[torch.contiguous_format, cl_format],
dtypes,
)
for (
unary_fn,
memory_format,
dtype,
) in options:
metrics.reset()
if dim == 4:
x_shape = (1, 3, 56, 56)
else:
x_shape = (1, 3, 20, 56, 56)
mod = M(unary_fn).to(memory_format=memory_format).eval()
v = (
torch.randn(x_shape, dtype=torch.float32)
.add(1)
.to(memory_format=memory_format)
)
# Add 1 for weight packing pass.
match_nodes = unary_list[unary_fn] + 1
if dtype in (
torch.float16,
torch.bfloat16,
) and self._check_unary_is_decomposed(unary_fn):
# Has extra dtype conversion nodes for autocast.
match_nodes += 2
self._test_common(mod, (v,), 2, match_nodes, check_autocast=dtype)
generated_kernel_count = cal_conv_generated_kernel_number(mod, v, dtype)
self.assertEqual(metrics.generated_kernel_count, generated_kernel_count)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_conv2d_unary_cpu(self):
self._test_conv_unary_cpu_base(dim=4)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_conv3d_unary_cpu(self):
self._test_conv_unary_cpu_base(dim=5)
def test_linear_unary(self):
class M(torch.nn.Module):
def __init__(
self,
unary_fn,
in_features,
out_features,
bias,
**kwargs,
):
super().__init__()
self.linear = torch.nn.Linear(
in_features,
out_features,
bias,
**kwargs,
)
self.unary_fn = unary_fn
def forward(self, x):
x = self.linear(x)
return self.unary_fn(x)
dtypes = []
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
dtypes.append(torch.bfloat16)
if torch.ops.mkldnn._is_mkldnn_fp16_supported():
dtypes.append(torch.float16)
options = itertools.product(unary_list, [True, False], dtypes)
for unary_fn, bias, dtype in options:
metrics.reset()
mod = M(unary_fn, 10, 30, bias=bias).eval()
# only fuse for linear when the dtype is bf16
mod = mod
v = torch.randn(2, 10)
# packing pass + unary fusion.
matcher_count = 2
# Add 1 for weight packing pass.
matcher_nodes = unary_list[unary_fn] + 1
if self._check_unary_is_decomposed(unary_fn):
# Has extra dtype conversion nodes for autocast.
matcher_nodes += 2
self._test_common(
mod, (v,), matcher_count, matcher_nodes, check_autocast=dtype
)
# only generated 1 kernel for "to"
self.assertEqual(metrics.generated_kernel_count, 1)
@unittest.skipIf(not TEST_MKL, "Test requires MKL")
def test_linear_fp32(self):
class M(torch.nn.Module):
def __init__(self, bias):
super().__init__()
self.linear = torch.nn.Linear(10, 30, bias)
def forward(self, x):
return self.linear(x)
for bias in [True, False]:
mod = M(bias=bias).eval()
v = torch.randn(2, 10)
# packing pass.
matcher_count = 1
matcher_nodes = 1
self._test_common(mod, (v,), matcher_count, matcher_nodes)
def test_linear_add_bias(self):
class M(torch.nn.Module):
def __init__(self, dtype, unary_fn):
super().__init__()
self.linear = torch.nn.Linear(10, 64, bias=False)
self.bias = torch.randn(64).to(dtype=dtype)
self.unary_fn = unary_fn
def forward(self, x):
x = self.linear(x) + self.bias
return self.unary_fn(x)
dtypes = []
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
dtypes.append(torch.bfloat16)
if torch.ops.mkldnn._is_mkldnn_fp16_supported():
dtypes.append(torch.float16)
options = itertools.product(unary_list, dtypes)
for unary_fn, dtype in options:
metrics.reset()
mod = M(dtype, unary_fn).eval()
v = torch.randn(2, 10)
matcher_count = 3
# Add 1 for weight packing pass, add 2 for bias folding pass.
matcher_nodes = unary_list[unary_fn] + 3
if self._check_unary_is_decomposed(unary_fn):
# Has extra dtype conversion nodes for autocast.
matcher_nodes += 2
self._test_common(
mod, (v,), matcher_count, matcher_nodes, check_autocast=dtype
)
self.assertEqual(metrics.generated_kernel_count, 1)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_conv_transpose2d_unary(self):
class M(torch.nn.Module):
def __init__(
self,
unary_fn,
**kwargs,
):
super().__init__()
self.conv_transpose2d = torch.nn.ConvTranspose2d(
3, 16, 3, stride=2, padding=1
)
self.unary_fn = unary_fn
def forward(self, x):
x = self.conv_transpose2d(x)
return self.unary_fn(x)
dtypes = [
torch.float,
]
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
dtypes.append(torch.bfloat16)
if torch.ops.mkldnn._is_mkldnn_fp16_supported():
dtypes.append(torch.float16)
options = itertools.product(
unary_list,
[torch.contiguous_format, torch.channels_last],
dtypes,
)
for unary_fn, memory_format, dtype in options:
metrics.reset()
x_shape = (1, 3, 28, 28)
mod = M(unary_fn).eval()
v = torch.randn(x_shape, dtype=torch.float32).to(
memory_format=memory_format
)
# Add 1 for weight packing pass.
match_nodes = unary_list[unary_fn] + 1
if dtype in (
torch.float16,
torch.bfloat16,
) and self._check_unary_is_decomposed(unary_fn):
# Has extra dtype conversion nodes for autocast.
match_nodes += 2
self._test_common(mod, (v,), 2, match_nodes, check_autocast=dtype)
generated_kernel_count = cal_conv_generated_kernel_number(mod, v, dtype)
self.assertEqual(metrics.generated_kernel_count, generated_kernel_count)
def _test_conv_binary_base(self, dim=4):
assert dim == 4 or dim == 5
class M(torch.nn.Module):
def __init__(
self,
binary_fn,
has_relu,
**kwargs,
):
super().__init__()
if dim == 4:
self.conv1 = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1)
self.conv2 = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1)
else:
self.conv1 = torch.nn.Conv3d(3, 16, kernel_size=3, stride=1)
self.conv2 = torch.nn.Conv3d(3, 16, kernel_size=3, stride=1)
self.binary_fn = binary_fn
self.has_relu = has_relu
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x)
if has_relu:
return self.binary_fn(x1, x2).relu()
else:
return self.binary_fn(x1, x2)
dtypes = [
torch.float,
]
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
dtypes.append(torch.bfloat16)
if torch.ops.mkldnn._is_mkldnn_fp16_supported():
dtypes.append(torch.float16)
cl_format = torch.channels_last if dim == 4 else torch.channels_last_3d
test_memory_format = [torch.contiguous_format, cl_format]
options = itertools.product(
binary_list,
[True, False],
test_memory_format,
dtypes,
)
for (
binary_fn,
has_relu,
memory_format,
dtype,
) in options:
metrics.reset()
if dim == 4:
x_shape = (1, 3, 56, 56)
else:
x_shape = (1, 3, 20, 56, 56)
mod = M(binary_fn, has_relu).eval()
v = (
torch.randn(x_shape, dtype=torch.float32, requires_grad=True)
.add(1)
.to(memory_format=memory_format)
)
match_count = binary_list[binary_fn][0] + 2
match_nodes = binary_list[binary_fn][1]
if has_relu:
match_nodes += 1
self._test_common(
mod, (v,), match_count, match_nodes + 2, check_autocast=dtype
)
generated_kernel_count = cal_conv_generated_kernel_number(mod, v, dtype)
self.assertEqual(metrics.generated_kernel_count, generated_kernel_count)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_conv2d_binary(self):
self._test_conv_binary_base(dim=4)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_conv3d_binary(self):
self._test_conv_binary_base(dim=5)
def test_linear_binary(self):
class M(torch.nn.Module):
def __init__(self, binary_fn, in_channels, out_channels, bias, **kwargs):
super().__init__()
self.linear = torch.nn.Linear(
in_channels, out_channels, bias=bias, **kwargs
)
self.binary_fn = binary_fn
def forward(self, x, y):
x = self.linear(x)
x = self.binary_fn(x, y.clone())
return x
dtypes = []
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
dtypes.append(torch.bfloat16)
if torch.ops.mkldnn._is_mkldnn_fp16_supported():
dtypes.append(torch.float16)
options = itertools.product(
binary_list, [[2, 3, 10], [2, 10]], [True, False], dtypes
)
out_feature = 30
for binary_fn, input_shape, bias, dtype in options:
metrics.reset()
# addmm(mm) + (linear+add)
match_count = 2
match_nodes = 3
if len(input_shape) == 3:
is_inplace = binary_list[binary_fn][2]
# view + linear + view(joint_graph+freeze pass)
match_count = match_count + 5 if is_inplace else match_count + 3
match_nodes = match_nodes + 7 if is_inplace else match_nodes + 5
mod = M(binary_fn, input_shape[-1], out_feature, bias).eval()
v = torch.randn(input_shape)
other = torch.randn(input_shape[:-1] + [out_feature]).to(dtype)
self._test_common(
mod,
(
v,
other,
),
match_count,
match_nodes,
check_autocast=dtype,
)
self.assertEqual(metrics.generated_kernel_count, 1)
def test_multi_linear_share_same_input(self):
# llama pattern.
class M(torch.nn.Module):
def __init__(
self,
):
super().__init__()
self.w1 = torch.nn.Linear(16, 16, bias=False)
self.w2 = torch.nn.Linear(16, 16, bias=False)
def forward(self, x):
return F.silu(self.w1(x)) * F.relu(self.w2(x))
dtypes = []
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
dtypes.append(torch.bfloat16)
if torch.ops.mkldnn._is_mkldnn_fp16_supported():
dtypes.append(torch.float16)
for dtype in dtypes:
mod = M().to(dtype).eval()
v = torch.randn(2, 4, 16).to(dtype)
# 1. view(match_count=4, match_nodes=4).
# 2. mm to packed linear(match_count=2, match_nodes=2).
# 3. view+linear+view to linear(match_count=2, match_nodes=6).
# 4. linear+silu fusion(match_count=1, match_nodes=5)
# 5. linear+relu fusion(match_count=1, match_nodes=2)
match_count = 10
match_nodes = 19
self._test_common(mod, (v,), match_count, match_nodes, rtol=1e-2, atol=1e-2)
def _qconv2d_cpu_test_helper(self, int8_mixed_bf16=False):
class M(torch.nn.Module):
def __init__(
self,
**kwargs,
):
super().__init__()
self.conv = torch.nn.Conv2d(3, 128, kernel_size=3, stride=1)
self.conv2 = torch.nn.Conv2d(128, 128, kernel_size=3, stride=1)
def forward(self, x):
return self.conv2(self.conv(x))
mod = M().eval()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(1)
def matcher_check_fn():
# 1. Dequant-Conv2D pattern matched in QConv2D weight prepack * 1
# int8_mixed_fp32: [dequant_node, dequantize_per_channel, clone, convolution]
# int8_mixed_bf16: [dequant_node, optional(convert_element_type_4),
# dequantize_per_channel, optional(convert_element_type_3), clone, convolution]
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 2
)
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_nodes"],
12 if int8_mixed_bf16 else 8,
)
self._test_common(
mod,
(v,),
check_quantization=True,
check_autocast=torch.bfloat16 if int8_mixed_bf16 else torch.float,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_cpu(self):
r"""
This testcase will quantize a single Conv2d module.
"""
self._qconv2d_cpu_test_helper()
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_int8_mixed_bf16(self):
r"""
This testcase will quantize a single Conv2d module with int8_mixed_bf16 quantization.
"""
self._qconv2d_cpu_test_helper(int8_mixed_bf16=True)
def _qconv2d_unary_cpu_test_helper(
self,
int8_mixed_bf16=False,
unary_op=torch.nn.ReLU(),
qconv2d_unary_matcher_nodes=None,
):
class M(torch.nn.Module):
def __init__(
self,
**kwargs,
):
super().__init__()
self.conv = torch.nn.Conv2d(3, 128, kernel_size=3, stride=1)
self.unary_fn = copy.deepcopy(unary_op)
self.conv2 = torch.nn.Conv2d(128, 128, kernel_size=3, stride=1)
self.unary_fn2 = copy.deepcopy(unary_op)
def forward(self, x):
tmp = self.unary_fn(self.conv(x))
return self.unary_fn2(self.conv2(tmp))
mod = M().eval()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(1)
def matcher_check_fn():
# 1. Dequant-Conv2D pattern matched in quantization weight prepack * 2
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 2
)
# 2. QConv2D Unary fusion in post-grad fusion pass * 2
self.assertEqual(counters["inductor"]["qconv2d_unary_matcher_count"], 2)
if qconv2d_unary_matcher_nodes:
self.assertEqual(
counters["inductor"]["qconv2d_unary_matcher_nodes"],
qconv2d_unary_matcher_nodes,
)
self._test_common(
mod,
(v,),
check_quantization=True,
check_autocast=torch.bfloat16 if int8_mixed_bf16 else torch.float,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_relu_cpu(self):
r"""
This testcase will quantize Conv2d->ReLU pattern.
"""
self._qconv2d_unary_cpu_test_helper()
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_relu_int8_mixed_bf16(self):
r"""
This testcase will quantize Conv2d->ReLU pattern with int8_mixed_bf16 quantization.
"""
self._qconv2d_unary_cpu_test_helper(int8_mixed_bf16=True)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_relu6_cpu(self):
r"""
This testcase will quantize Conv2d->ReLU6 pattern.
"""
self._qconv2d_unary_cpu_test_helper(unary_op=torch.nn.ReLU6())
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_hardtanh_cpu(self):
r"""
This testcase will quantize Conv2d->Hardtanh pattern.
"""
self._qconv2d_unary_cpu_test_helper(unary_op=torch.nn.Hardtanh())
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_hardtanh_int8_mixed_bf16_cpu(self):
r"""
This testcase will quantize Conv2d->Hardtanh pattern.
Match.nodes:
[qconv2d_pointwise_default, convert_element_type, clamp_min, clamp_max, convert_element_type, quantize_per_tensor]
[qconv2d_pointwise_default, convert_element_type, clamp_min, clamp_max, convert_element_type]
"""
self._qconv2d_unary_cpu_test_helper(
unary_op=torch.nn.Hardtanh(),
int8_mixed_bf16=True,
qconv2d_unary_matcher_nodes=11,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_hardswish_cpu(self):
r"""
This testcase will quantize Conv2d->Hardswish pattern.
"""
self._qconv2d_unary_cpu_test_helper(unary_op=torch.nn.Hardswish())
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_hardswish_int8_mixed_bf16_cpu(self):
r"""
This testcase will quantize Conv2d->Hardswish pattern.
Match.nodes:
[qconv2d_pointwise_default, convert_element_type, add, clamp_min,
clamp_max, mul, div, convert_element_type, quantize_per_tensor]
[qconv2d_pointwise_default, convert_element_type, add, clamp_min, clamp_max, mul, div, convert_element_type]
"""
self._qconv2d_unary_cpu_test_helper(
unary_op=torch.nn.Hardswish(),
int8_mixed_bf16=True,
qconv2d_unary_matcher_nodes=17,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_silu_cpu(self):
r"""
This testcase will quantize Conv2d->SiLU pattern.
"""
self._qconv2d_unary_cpu_test_helper(unary_op=torch.nn.SiLU())
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_silu_int8_mixed_bf16_cpu(self):
r"""
This testcase will quantize Conv2d->SiLU pattern.
Match.nodes:
[qconv2d_pointwise_default, convert_element_type, sigmoid, mul,
convert_element_type, quantize_per_tensor]
[qconv2d_pointwise_default, convert_element_type, sigmoid, mul, convert_element_type]
"""
self._qconv2d_unary_cpu_test_helper(
unary_op=torch.nn.SiLU(),
int8_mixed_bf16=True,
qconv2d_unary_matcher_nodes=11,
)
def _qconv2d_add_cpu_test_helper(self, use_relu=False, int8_mixed_bf16=False):
r"""
This testcase will quantize a Conv2d->Add pattern as:
X
/ \
Conv1(X) Conv2(X)
\ /
Add
|
Optional(relu)
|
Y
"""
class M(torch.nn.Module):
def __init__(
self,
add_fn,
use_relu,
**kwargs,
):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.conv2 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.add_fn = add_fn
self.relu = torch.nn.ReLU()
self.conv3 = torch.nn.Conv2d(6, 6, kernel_size=3, stride=1)
self.conv4 = torch.nn.Conv2d(6, 6, kernel_size=3, stride=1)
self.add_fn2 = add_fn
self.relu2 = torch.nn.ReLU()
self.use_relu = use_relu
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x)
tmp = self.add_fn(x1, x2)
if self.use_relu:
tmp = self.relu(tmp)
tmp1 = self.conv3(tmp)
tmp2 = self.conv4(tmp)
res = self.add_fn2(tmp1, tmp2)
if self.use_relu:
res = self.relu2(res)
return res
for add_fn in quantization_add_fn_list + quantization_inplace_add_fn_list:
mod = M(add_fn, use_relu).eval()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(
1
)
def matcher_check_fn():
# 1. Dequant-Conv2D pattern matched in quantization weight prepack * 4
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 4
)
# 2. Qconv2d Binary Unary fusion in post-grad fusion pass * 2
self.assertEqual(
counters["inductor"]["qconv2d_binary_matcher_count"], 2
)
self._test_common(
mod,
(v,),
check_quantization=True,
check_autocast=torch.bfloat16 if int8_mixed_bf16 else torch.float,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_add_cpu(self):
self._qconv2d_add_cpu_test_helper()
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_add_int8_mixed_bf16(self):
self._qconv2d_add_cpu_test_helper(int8_mixed_bf16=True)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_add_relu_cpu(self):
self._qconv2d_add_cpu_test_helper(use_relu=True)
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_add_relu_int8_mixed_bf16(self):
self._qconv2d_add_cpu_test_helper(use_relu=True, int8_mixed_bf16=True)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_add_broadcast_shapes_cpu(self):
r"""
This testcase will quantize Conv2d->add pattern using broadcast shape inputs.
Conv2d->Add fusion will fail for the broadcast shape inputs case.
"""
class M(torch.nn.Module):
def __init__(self, use_bias):
super().__init__()
self.conv = torch.nn.Conv2d(32, 32, kernel_size=3, stride=1)
def forward(self, x1, x2):
return torch.add(self.conv(x1), x2)
bias_list = [True, False]
for bias in bias_list:
mod = M(bias).eval()
x1 = torch.randn((2, 32, 9, 9))
x2 = torch.randn((2, 32, 1, 1))
def matcher_check_fn():
# 1. Dequant-Conv2D pattern matched in quantization weight prepack * 1
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 1
)
# 2. Qconv2d Binary Unary fusion in post-grad fusion pass * 0
self.assertEqual(
counters["inductor"]["qconv2d_binary_matcher_count"], 0
)
self._test_common(
mod,
(x1, x2),
check_quantization=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_add_2(self):
r"""
This testcase prevents this pattern be matched as a conv_binary fusion by mistake.
Conv(X) 3
\ /
Add
We see this pattern in Mobilenet v3 large which add is decomposed from torch.nn.Hardswish or torch.nn.Hardsigmoid.
"""
class M(torch.nn.Module):
def __init__(
self,
post_op,
):
super().__init__()
self.conv = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.post_op = post_op
def forward(self, x):
return self.post_op(self.conv(x))
for post_op in [
torch.nn.Hardswish(inplace=True),
torch.nn.Hardsigmoid(inplace=True),
]:
mod = M(post_op).eval()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(
1
)
def matcher_check_fn():
# Shouldn't hit conv binary fusion
self.assertEqual(
counters["inductor"]["qconv2d_binary_matcher_count"], 0
)
self._test_common(
mod,
(v,),
check_quantization=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_add_3(self):
r"""
This testcase will test below model:
x
/ \
conv1 maxpool
\ / \
add conv2
\ /
cat
Based on default recipe of x86InductorQuantizer, we will see this pattern after convert:
qconv1 maxpool
\ |
\ q1
\ / \
\ dq1 qconv2
\ /
add
|
q2
Since q1 has 2 users and qconv2 is not ancestor node of qconv1, we shouldn't fuse:
int8
/
qconv1 dq1
\ /
add
|
q2
|
int8
Instead we can match and fuse this pattern into qconv_binary:
qconv1 fp32
\ /
add
|
fp32
"""
class M(torch.nn.Module):
def __init__(
self,
):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 3, kernel_size=3, stride=1)
self.conv2 = torch.nn.Conv2d(3, 3, kernel_size=1, stride=1)
self.maxpool = torch.nn.MaxPool2d(
kernel_size=3, stride=1, padding=0, dilation=1
)
def forward(self, x):
tmp1 = self.conv1(x)
tmp2 = self.maxpool(x)
add = torch.add(tmp1, tmp2)
tmp3 = self.conv2(tmp2)
return torch.cat((add, tmp3), dim=1)
mod = M().eval()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(1)
def matcher_check_fn():
self.assertEqual(counters["inductor"]["qconv2d_binary_matcher_count"], 1)
# The matched qconv binary pattern should have 2 nodes [qconv, add]
# instead of 11 which has dequant in binary input and output quant
self.assertEqual(counters["inductor"]["qconv2d_binary_matcher_nodes"], 2)
self._test_common(
mod,
(v,),
check_quantization=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qat_qconv2d(self):
r"""
This testcase will quantize a single Conv2d module with qat flow.
"""
class M(torch.nn.Module):
def __init__(
self,
**kwargs,
):
super().__init__()
self.conv = torch.nn.Conv2d(3, 128, kernel_size=3, stride=1)
self.bn = torch.nn.BatchNorm2d(128)
def forward(self, x):
return self.bn(self.conv(x))
mod = M().train()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=True).add(1)
def matcher_check_fn():
# 1. Dequant-conv pattern matched in quantization weight prepack * 1
# [dequantize_per_tensor, dequantize_per_channel, clone, convolution]
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 1
)
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_nodes"], 4
)
# 2. QConv2D Unary fusion in post-grad fusion pass * 1
# [qconv2d_pointwise_default, quantize_per_tensor]
self.assertEqual(counters["inductor"]["qconv2d_unary_matcher_count"], 1)
self.assertEqual(counters["inductor"]["qconv2d_unary_matcher_nodes"], 2)
self._test_common(
mod,
(v,),
check_quantization=True,
is_qat=True,
matcher_check_fn=matcher_check_fn,
)
def _qat_qconv2d_unary_cpu_test_helper(
self,
unary_op=torch.nn.ReLU(),
):
class M(torch.nn.Module):
def __init__(
self,
**kwargs,
):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, kernel_size=3, stride=1)
self.unary_fn = copy.deepcopy(unary_op)
self.bn = torch.nn.BatchNorm2d(3)
self.conv2 = torch.nn.Conv2d(3, 3, kernel_size=3, stride=1)
self.unary_fn2 = copy.deepcopy(unary_op)
self.bn2 = torch.nn.BatchNorm2d(3)
def forward(self, x):
tmp = self.unary_fn(self.bn(self.conv(x)))
return self.unary_fn2(self.bn2(self.conv2(tmp)))
mod = M()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=True).add(1)
def matcher_check_fn():
# 1. Dequant-conv pattern matched in quantization weight prepack * 1
# [convert_element_type_1, sub, mul_1, dequantize_per_channel, clone, convolution]
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 2
)
# 2. QConv2D Unary fusion in post-grad fusion pass * 1
# [qconv2d_pointwise_default, relu, div_1, round_2, add_1, clamp_min_1, clamp_max_1, convert_element_type_2]
self.assertEqual(counters["inductor"]["qconv2d_unary_matcher_count"], 2)
self._test_common(
mod,
(v,),
check_quantization=True,
is_qat=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qat_qconv2d_relu(self):
r"""
This testcase will quantize Conv2d->ReLU pattern with qat flow.
"""
self._qat_qconv2d_unary_cpu_test_helper()
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qat_qconv2d_relu6(self):
r"""
This testcase will quantize Conv2d->ReLU6 pattern with qat flow.
"""
self._qat_qconv2d_unary_cpu_test_helper(unary_op=torch.nn.ReLU6())
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qat_qconv2d_hardtanh(self):
r"""
This testcase will quantize Conv2d->Hardtanh pattern with qat flow.
"""
self._qat_qconv2d_unary_cpu_test_helper(unary_op=torch.nn.Hardtanh())
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qat_qconv2d_silu(self):
r"""
This testcase will quantize Conv2d->SiLU pattern with qat flow.
"""
self._qat_qconv2d_unary_cpu_test_helper(unary_op=torch.nn.SiLU())
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qat_qconv2d_hardswish(self):
r"""
This testcase will quantize Conv2d->Hardswish pattern with qat flow.
"""
self._qat_qconv2d_unary_cpu_test_helper(unary_op=torch.nn.Hardswish())
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qat_qconv2d_add(self):
r"""
This testcase will quantize a Conv2d->Add pattern as:
X
/ \
Conv1(X) Conv2(X)
\ /
Add
|
Y
"""
class M(torch.nn.Module):
def __init__(
self,
**kwargs,
):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.bn1 = torch.nn.BatchNorm2d(6)
self.conv2 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.bn2 = torch.nn.BatchNorm2d(6)
def forward(self, x):
x1 = self.bn1(self.conv1(x))
x2 = self.bn2(self.conv2(x))
return x1 + x2
mod = M().train()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=True).add(1)
def matcher_check_fn():
# 1. Dequant-conv pattern matched in quantization weight prepack * 2
# [dequantize_per_tensor, dequantize_per_channel, clone, convolution]
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 2
)
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_nodes"], 8
)
# 2. Qconv2d Binary fusion in post-grad fusion pass * 1
# [qconv2d_pointwise_default_1, dequantize_per_tensor, add_3, quantize_per_tensor]
self.assertEqual(counters["inductor"]["qconv2d_binary_matcher_count"], 1)
self.assertEqual(counters["inductor"]["qconv2d_binary_matcher_nodes"], 4)
self._test_common(
mod,
(v,),
check_quantization=True,
is_qat=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qat_qconv2d_add_relu(self):
r"""
This testcase will quantize a Conv2d->Add->ReLU pattern as:
X
/ \
Conv1(X) Conv2(X)
\ /
Add
|
ReLU
|
Y
"""
class M(torch.nn.Module):
def __init__(
self,
**kwargs,
):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.bn1 = torch.nn.BatchNorm2d(6)
self.conv2 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.bn2 = torch.nn.BatchNorm2d(6)
self.relu = torch.nn.ReLU()
def forward(self, x):
x1 = self.bn1(self.conv1(x))
x2 = self.bn2(self.conv2(x))
return self.relu(x1 + x2)
mod = M().train()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=True).add(1)
def matcher_check_fn():
# 1. Dequant-conv pattern matched in quantization weight prepack * 2
# [dequantize_per_tensor, dequantize_per_channel, clone, convolution]
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 2
)
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_nodes"], 8
)
# 2. Qconv2d Binary fusion in post-grad fusion pass * 1
# [qconv2d_pointwise_default_1, dequantize_per_tensor, add_3, relu, quantize_per_tensor]
self.assertEqual(counters["inductor"]["qconv2d_binary_matcher_count"], 1)
self.assertEqual(counters["inductor"]["qconv2d_binary_matcher_nodes"], 5)
self._test_common(
mod,
(v,),
check_quantization=True,
is_qat=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qconv2d_dequant_promotion_cpu(self):
r"""
This testcase tests if dequant node before conv2d is promoted correctly:
X
|
Conv1(X)
/ \
Conv2(X) Conv3(X)
\ /
Add
|
Y
"""
class M(torch.nn.Module):
def __init__(
self,
**kwargs,
):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.conv2 = torch.nn.Conv2d(6, 6, kernel_size=3, stride=1)
self.conv3 = torch.nn.Conv2d(6, 6, kernel_size=3, stride=1)
def forward(self, x):
temp = self.conv1(x)
temp = self.conv2(temp) + self.conv3(temp)
return temp
mod = M().eval()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(1)
def matcher_check_fn():
# 1. Dequant pattern matcher for dequant promotion * 1
# [dequantize_per_tensor]
self.assertEqual(counters["inductor"]["dequant_promotion_matcher_count"], 1)
self.assertEqual(counters["inductor"]["dequant_promotion_matcher_nodes"], 1)
# 2. Dequant-conv pattern matched in quantization weight prepack * 3
# [dequantize_per_tensor, dequantize_per_channel, clone, convolution]
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 3
)
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_nodes"], 12
)
# 3. Qconv2d Binary fusion in post-grad fusion pass * 1
# [qconv2d_pointwise_default_1, add_3]
self.assertEqual(counters["inductor"]["qconv2d_binary_matcher_count"], 1)
self.assertEqual(counters["inductor"]["qconv2d_binary_matcher_nodes"], 2)
self._test_common(
mod,
(v,),
check_quantization=True,
matcher_check_fn=matcher_check_fn,
)
def _qlinear_cpu_test_helper(
self,
inputs,
int8_mixed_bf16=False,
do_permute=False,
matcher_check_fn=None,
bias=True,
is_dynamic=False,
is_qat=False,
):
class M(torch.nn.Module):
def __init__(self, use_bias, do_permute=False):
super().__init__()
self.linear = torch.nn.Linear(4, 3, use_bias)
self.linear2 = torch.nn.Linear(3, 4, use_bias)
self.do_permute = do_permute
def forward(self, x):
if self.do_permute:
x = torch.reshape(torch.permute(x, (0, 2, 3, 1)), (2, 12, 4))
return self.linear2(self.linear(x))
mod = M(bias, do_permute=do_permute).eval()
def _default_matcher_check_fn():
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_count"], 2
)
self._test_common(
mod,
inputs,
check_autocast=torch.bfloat16 if int8_mixed_bf16 else torch.float,
check_quantization=True,
matcher_check_fn=matcher_check_fn
if matcher_check_fn is not None
else _default_matcher_check_fn,
is_qat=is_qat,
is_dynamic=is_dynamic,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_cpu(self):
r"""
This testcase will quantize a single Linear Moduel.
"""
for bias in [True, False]:
self._qlinear_cpu_test_helper((torch.randn((2, 4)),), bias=bias)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_dynamic_qlinear_cpu(self):
r"""
This testcase will quantize a single Linear Moduel.
"""
for bias in [True, False]:
self._qlinear_cpu_test_helper(
(torch.randn((2, 4)),), bias=bias, is_dynamic=True
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_dynamic_qlinear_qat_cpu(self):
r"""
This testcase will quantize a single Linear Moduel.
"""
for bias in [True, False]:
self._qlinear_cpu_test_helper(
(torch.randn((2, 4)),), bias=bias, is_dynamic=True, is_qat=True
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_dynamic_qlinear_input_dim_exceeds_2(self):
r"""
This testcase will quantize a single Linear Moduel.
"""
for bias in [True, False]:
self._qlinear_cpu_test_helper(
(torch.randn((2, 3, 4)),), bias=bias, is_dynamic=True
)
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_int8_mixed_bf16(self):
r"""
This testcase will quantize a single Linear Moduel with int8_mixed_bf16 quantization.
"""
for bias in [True, False]:
self._qlinear_cpu_test_helper(
(torch.randn((2, 4)),), int8_mixed_bf16=True, bias=bias
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_input_dim_exceeds_2(self):
r"""
This testcase will quantize a single Linear Moduel.
"""
for bias in [True, False]:
self._qlinear_cpu_test_helper((torch.randn((2, 3, 4)),), bias=bias)
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_int8_mixed_bf16_input_dim_exceeds_2(self):
r"""
This testcase will quantize a single Linear Moduel with int8_mixed_bf16 quantization.
"""
for bias in [True, False]:
self._qlinear_cpu_test_helper(
(torch.randn((2, 3, 4)),), int8_mixed_bf16=True, bias=bias
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_input_dim_exceeds_2_and_not_contiguous(self):
r"""
This testcase will quantize a single Linear Module.
* Input dim exceeds 2
* Input not contiguous
"""
for bias in [True, False]:
def matcher_check_fn():
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_count"], 2
)
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_nodes"],
13 if bias else 12,
)
self._qlinear_cpu_test_helper(
(torch.randn((2, 4, 3, 4)),),
do_permute=True,
matcher_check_fn=matcher_check_fn,
bias=bias,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_int8_mixed_bf16_input_dim_exceeds_2_and_not_contiguous(self):
r"""
This testcase will quantize a single Linear Module for int8_bf16.
* Input dim exceeds 2
* Input not contiguous
"""
for bias in [True, False]:
def matcher_check_fn():
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_count"], 2
)
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_nodes"],
17 if bias else 16,
)
self._qlinear_cpu_test_helper(
(torch.randn((2, 4, 3, 4)),),
int8_mixed_bf16=True,
do_permute=True,
matcher_check_fn=matcher_check_fn,
bias=bias,
)
def _qlinear_unary_cpu_test_helper(
self, inputs, unary_op=torch.nn.ReLU(), int8_mixed_bf16=False
):
class M(torch.nn.Module):
def __init__(self, use_bias):
super().__init__()
self.linear = torch.nn.Linear(4, 4, use_bias)
self.unary_fn = copy.deepcopy(unary_op)
self.linear2 = torch.nn.Linear(4, 4, use_bias)
self.unary_fn2 = copy.deepcopy(unary_op)
def forward(self, x):
tmp = self.unary_fn(self.linear(x))
return self.unary_fn2(self.linear2(tmp))
bias_list = [True, False]
for bias in bias_list:
mod = M(bias).eval()
def matcher_check_fn():
# 1. dequant-linear pattern matched in quantization weight prepack
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_count"], 2
)
# 2. QLinear Unary fusion in post-grad fusion pass
self.assertEqual(counters["inductor"]["qlinear_unary_matcher_count"], 2)
self._test_common(
mod,
inputs,
check_autocast=torch.bfloat16 if int8_mixed_bf16 else torch.float,
check_quantization=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_relu_cpu(self):
r"""
This testcase will quantize a Linear->ReLU pattern.
"""
self._qlinear_unary_cpu_test_helper((torch.randn((2, 4)),))
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_relu_int8_mixed_bf16(self):
r"""
This testcase will quantize a Linear->ReLU pattern with int8_mixed_bf16 quantization.
"""
self._qlinear_unary_cpu_test_helper(
(torch.randn((2, 4)),), int8_mixed_bf16=True
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_relu_input_dim_exceeds_2(self):
r"""
This testcase will quantize a Linear->ReLU pattern.
"""
self._qlinear_unary_cpu_test_helper((torch.randn((2, 3, 4)),))
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_relu_int8_mixed_bf16_input_dim_exceeds_2(self):
r"""
This testcase will quantize a Linear->ReLU pattern with int8_mixed_bf16 quantization.
"""
self._qlinear_unary_cpu_test_helper(
(torch.randn((2, 3, 4)),), int8_mixed_bf16=True
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_gelu_cpu(self):
r"""
This testcase will quantize a Linear->GELU pattern.
"""
for gelu in [torch.nn.GELU("none"), torch.nn.GELU("tanh")]:
self._qlinear_unary_cpu_test_helper((torch.randn((2, 4)),), gelu)
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_gelu_int8_mixed_bf16(self):
r"""
This testcase will quantize a Linear->GELU pattern with int8_mixed_bf16 quantization.
"""
for gelu in [torch.nn.GELU("none"), torch.nn.GELU("tanh")]:
self._qlinear_unary_cpu_test_helper(
(torch.randn((2, 4)),), gelu, int8_mixed_bf16=True
)
def _qlinear_add_cpu_test_helper(self, use_relu=False, int8_mixed_bf16=False):
r"""
This testcase will quantize two consecutive Linear->Add(->relu) patterns as:
X
/ \
linear(X) linear(X)
\ /
Add
|
Optional(relu)
/ \
linear(X) linear(X)
\ /
Add
|
Optional(relu)
|
Y
"""
def fake_quant(x):
# to produce a float32 result as extra input
qlib = torch.ops.quantized_decomposed
x = qlib.quantize_per_tensor.default(x, 0.0166785, 42, 0, 255, torch.uint8)
x = qlib.dequantize_per_tensor.default(
x, 0.0166785, 42, 0, 255, torch.uint8
)
return x
class M(torch.nn.Module):
def __init__(
self,
add_fn,
use_relu,
fake_quant_before_extra_input,
):
super().__init__()
self.linear1 = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
self.add_fn = add_fn
self.relu = torch.nn.ReLU()
self.linear3 = torch.nn.Linear(4, 4)
self.linear4 = torch.nn.Linear(4, 4)
self.add_fn2 = add_fn
self.relu2 = torch.nn.ReLU()
self.use_relu = use_relu
self.fake_quant_before_extra_input = fake_quant_before_extra_input
def forward(self, x):
x1 = self.linear1(x)
x2 = self.linear2(x)
if self.fake_quant_before_extra_input:
x2 = fake_quant(x2)
tmp = self.add_fn(x1, x2)
if self.use_relu:
tmp = self.relu(tmp)
tmp1 = self.linear3(tmp)
tmp2 = self.linear4(tmp)
if self.fake_quant_before_extra_input:
tmp2 = fake_quant(tmp2)
res = self.add_fn2(tmp1, tmp2)
if self.use_relu:
res = self.relu2(res)
return res
add_fn_list = [
lambda x, y: x + y,
lambda x, y: y + x,
lambda x, y: x.add_(y),
lambda x, y: y.add_(x),
]
fake_quant_x2_list = [False, True] if int8_mixed_bf16 else [False]
cases = itertools.product(add_fn_list, fake_quant_x2_list)
for add_fn, fq_x2 in cases:
mod = M(add_fn, use_relu, fq_x2).eval()
v = torch.randn((4, 4), dtype=torch.float32, requires_grad=False).add(1)
def matcher_check_fn():
# 1. Dequant-linear pattern matched in quantization weight prepack * 4
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_count"], 4
)
# pattern = [dequant_per_tensor, (convert_dtype), dequant_per_channel, (convert_dtype), permute, addmm]
nodes_per_match = 6 if int8_mixed_bf16 else 4
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_nodes"],
4 * nodes_per_match,
)
# 2. Qlinear Binary Unary fusion in post-grad fusion pass * 2
self.assertEqual(
counters["inductor"]["qlinear_binary_matcher_count"], 2
)
# Two linear-binary patterns are matched
# matched patter1 = [qlinear, add, (convert dtype), (relu), quantize_per_tensor]
# matched patter2 = [qlinear, add, (convert dtype), (relu)]
# If add_fn is x.add_(y), x is bf16 and y is fp32, there is a to_bf16 node after binary
to_bf16_after_binary = 2 * (add_fn == add_fn_list[2] and fq_x2)
self.assertEqual(
counters["inductor"]["qlinear_binary_matcher_nodes"],
5 + 2 * use_relu + to_bf16_after_binary,
)
for is_qat in [False, True]:
self._test_common(
mod,
(v,),
check_quantization=True,
check_autocast=torch.bfloat16 if int8_mixed_bf16 else torch.float,
matcher_check_fn=matcher_check_fn,
is_qat=is_qat,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_add_cpu(self):
self._qlinear_add_cpu_test_helper()
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_add_int8_mixed_bf16(self):
self._qlinear_add_cpu_test_helper(int8_mixed_bf16=True)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_add_relu_cpu(self):
self._qlinear_add_cpu_test_helper(use_relu=True)
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_add_relu_int8_mixed_bf16(self):
self._qlinear_add_cpu_test_helper(use_relu=True, int8_mixed_bf16=True)
def _qlinear_dequant_promotion_cpu_test_helper(
self,
inputs,
int8_mixed_bf16=False,
is_dynamic=False,
matcher_check_fn=None,
):
class M(torch.nn.Module):
def __init__(
self,
**kwargs,
):
super().__init__()
self.linear1 = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
self.linear3 = torch.nn.Linear(4, 4)
def forward(self, x):
temp = self.linear1(x)
temp = self.linear2(temp) + self.linear3(temp)
return temp
mod = M().eval()
def default_matcher_check_fn():
# 1. Dequant pattern matcher for dequant promotion * 1
self.assertEqual(counters["inductor"]["dequant_promotion_matcher_count"], 1)
# 2. dequant-linear pattern matched in quantization weight prepack * 3
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_count"], 3
)
# 3. QLinear Unary fusion in post-grad fusion pass * 1
self.assertEqual(counters["inductor"]["qlinear_unary_matcher_count"], 1)
self._test_common(
mod,
inputs,
check_autocast=torch.bfloat16 if int8_mixed_bf16 else torch.float,
check_quantization=True,
matcher_check_fn=matcher_check_fn
if matcher_check_fn is not None
else default_matcher_check_fn,
is_dynamic=is_dynamic,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_dequant_promotion_cpu(self):
r"""
This testcase test if dequant node before linear is promoted correctly:
X
|
Linear1(X)
/ \
Linear2(X) Linear3(X)
\ /
Add
|
Y
"""
self._qlinear_dequant_promotion_cpu_test_helper((torch.randn((2, 4)),))
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_dequant_promotion_int8_mixed_bf16(self):
r"""
Test with int8_mixed_bf16 quantization.
This testcase test if dequant node before linear is promoted correctly:
X
|
Linear1(X)
/ \
Linear2(X) Linear3(X)
\ /
Add
|
Y
"""
self._qlinear_dequant_promotion_cpu_test_helper(
(torch.randn((2, 4)),), int8_mixed_bf16=True
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_dequant_promotion_cpu_input_dim_exceeds_2(self):
r"""
This testcase test if dequant node before linear is promoted correctly:
X
|
Linear1(X)
/ \
Linear2(X) Linear3(X)
\ /
Add
|
Y
"""
self._qlinear_dequant_promotion_cpu_test_helper((torch.randn((2, 3, 4)),))
@skipIfNoDynamoSupport
@skipIfNoONEDNNBF16
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_dequant_promotion_int8_mixed_bf16_input_dim_exceeds_2(self):
r"""
Test with int8_mixed_bf16 quantization.
This testcase test if dequant node before linear is promoted correctly:
X
|
Linear1(X)
/ \
Linear2(X) Linear3(X)
\ /
Add
|
Y
"""
self._qlinear_dequant_promotion_cpu_test_helper(
(torch.randn((2, 3, 4)),), int8_mixed_bf16=True
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_dequant_promotion_dynamic_cpu(self):
r"""
This testcase test if dequant node before linear is promoted correctly:
X
|
Linear1(X)
/ \
Linear2(X) Linear3(X)
\ /
Add
|
Y
"""
def matcher_check_fn():
# 1. Dequant pattern matcher for dequant promotion * 1
self.assertEqual(counters["inductor"]["dequant_promotion_matcher_count"], 1)
# 2. dequant-linear pattern matched in quantization weight prepack * 3
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_count"], 3
)
self._qlinear_dequant_promotion_cpu_test_helper(
(torch.randn((2, 4)),),
matcher_check_fn=matcher_check_fn,
is_dynamic=True,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qlinear_mul_cpu(self):
r"""
This testcase will quantize a Linear->Mul pattern.
"""
class M(torch.nn.Module):
def __init__(self, use_bias):
super().__init__()
self.linear = torch.nn.Linear(4, 5, use_bias)
def forward(self, x1, x2):
return torch.mul(self.linear(x1), x2)
bias_list = [True, False]
for bias in bias_list:
mod = M(bias).eval()
x1 = torch.randn((2, 4))
x2 = torch.randn((2, 5))
def matcher_check_fn():
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_count"], 1
)
self._test_common(
mod,
(x1, x2),
check_quantization=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfRocm
def test_qmaxpool2d(self):
r"""
This testcase will quantize Conv2d->ReLU->MaxPool2d pattern.
"""
class M(torch.nn.Module):
def __init__(
self,
kwargs,
):
super().__init__()
self.conv = torch.nn.Conv2d(
3, 64, 7, bias=True, stride=2, padding=3, dilation=1
)
self.relu = torch.nn.ReLU()
self.maxpool = torch.nn.MaxPool2d(3, **kwargs)
def forward(self, x):
return self.maxpool(self.relu(self.conv(x)))
kwargs_list = [
{"stride": 2},
{"stride": 2, "padding": 1},
{"stride": 2, "padding": 1, "dilation": 1},
{"stride": 2, "padding": 1, "dilation": 1, "ceil_mode": False},
]
for kwargs in kwargs_list:
mod = M(kwargs).eval()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(
1
)
def matcher_check_fn():
self.assertEqual(counters["inductor"]["qmaxpool2d_matcher_count"], 1)
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 1
)
self.assertEqual(counters["inductor"]["qconv2d_unary_matcher_count"], 1)
self._test_common(
mod,
(v,),
check_quantization=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfRocm
def test_qflatten(self):
r"""
This testcase will quantize Conv2d->AdaptiveAvgPool2d->flatten pattern.
"""
class M(torch.nn.Module):
def __init__(
self,
):
super().__init__()
self.conv = torch.nn.Conv2d(
3, 64, 7, bias=True, stride=2, padding=3, dilation=1
)
self.relu = torch.nn.ReLU()
self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
return torch.flatten(
self.adaptive_avg_pool2d(self.relu(self.conv(x))), 1
)
mod = M().eval()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(1)
def matcher_check_fn():
self.assertEqual(counters["inductor"]["qreshape_matcher_count"], 1)
self._test_common(
mod,
(v,),
check_quantization=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfRocm
def test_qcat(self):
r"""
This testcase will quantize cat based pattern:
X
/ \
Conv1(X) Pow(x)
\ \
\ Conv2(X)
\ /
Cat
|
Y
"""
class M(torch.nn.Module):
def __init__(
self,
):
super().__init__()
self.conv = torch.nn.Conv2d(
3, 64, 7, bias=True, stride=2, padding=3, dilation=1
)
self.conv2 = torch.nn.Conv2d(
3, 64, 7, bias=True, stride=2, padding=3, dilation=1
)
def forward(self, x):
temp1 = self.conv(x)
temp2 = self.conv2(torch.pow(x, 2))
return torch.cat((temp1, temp2), 1)
mod = M().eval()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(1)
def matcher_check_fn():
self.assertEqual(counters["inductor"]["qcat_matcher_count"], 1)
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 2
)
self.assertEqual(counters["inductor"]["qconv2d_unary_matcher_count"], 2)
self._test_common(
mod,
(v,),
check_quantization=True,
matcher_check_fn=matcher_check_fn,
)
# https://github.com/pytorch/pytorch/issues/99841.
def test_hardtanh_pattern_fallback(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv_transpose = torch.nn.ConvTranspose2d(
in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1
)
def forward(self, x, min_value, max_value):
conv_transpose_output = self.conv_transpose(x)
clamp_min_output = torch.clamp_min(conv_transpose_output, min_value)
clamp_max_output = torch.clamp_max(clamp_min_output, max_value)
return clamp_max_output
# check works for min_value > max_value.
min_values = [3, torch.randn(1, 32, 28, 28)]
max_values = [0, torch.randn(1, 32, 28, 28)]
v = torch.randn(1, 3, 28, 28)
for min_value, max_value in zip(min_values, max_values):
mod = Model().eval()
self._test_common(mod, (v, min_value, max_value), 2, 4)
def test_leaky_relu_pattern_fallback(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1
)
def forward(self, x, negative_slope):
conv_out = self.conv(x)
return torch.where(conv_out > 0, conv_out, conv_out * negative_slope)
negative_slopes = [0.1, torch.randn(1, 32, 28, 28)]
with torch.no_grad():
v = torch.randn(1, 3, 28, 28)
for negative_slope in negative_slopes:
mod = Model().eval()
self._test_common(mod, (v, negative_slope), 2, 5)
# https://github.com/pytorch/pytorch/issues/99838.
def test_conv2d_add_scalar(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
out_conv = self.conv(x)
out = torch.add(out_conv, 1.0)
return out
with torch.no_grad():
mod = Model().eval()
v = torch.randn(1, 3, 28, 28)
self._test_common(mod, (v,), 1, 1)
def test_conv2d_binary_inplace_fusion_pass_cpu(
self, include_ops=None, exclude_ops=None
):
class Model_v1(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1
)
def forward(self, x, other):
conv_out = self.conv(x)
return torch.add(conv_out, other.relu())
class Model_v2(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1
)
self.conv2 = torch.nn.Conv2d(
in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1
)
self.conv3 = torch.nn.Conv2d(
in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1
)
def forward(self, x, _):
conv_out1 = self.conv(x)
pow_out = torch.pow(conv_out1, 2)
conv_out2 = self.conv2(pow_out)
conv_out3 = self.conv3(conv_out2)
res = torch.add(conv_out3, pow_out)
return res
input = torch.randn(1, 3, 28, 28).to(memory_format=torch.channels_last)
others = [
torch.randn(1, 32, 28, 28).to(memory_format=torch.channels_last),
torch.randn(1, 32, 28, 28).to(memory_format=torch.channels_last),
]
mod_v1 = Model_v1().to(memory_format=torch.channels_last).eval()
mod_v2 = Model_v2().to(memory_format=torch.channels_last).eval()
if include_ops is None:
include_ops = ["mkldnn._convolution_pointwise_.binary"]
if exclude_ops is None:
exclude_ops = ["mkldnn._convolution_pointwise.binary"]
for other, mod in zip(others, [mod_v1, mod_v2]):
self._test_code_common(mod, (input, other), include_ops, exclude_ops)
def test_conv2d_binary_inplace_fusion_failed_cpu(
self, include_ops=None, exclude_ops=None
):
# Written buffer is graph input, we can't fuse inplace.
class Model_v1(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1
)
def forward(self, x, other):
conv_out = self.conv(x)
return torch.add(conv_out, other)
# Written buffer is an alias tensor, we can't fuse inplace.
class Model_v2(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1
)
def forward(self, x, other):
conv_out = self.conv(x)
return torch.add(conv_out, other[1:2, :, :, :]), other
class Model_v3(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1
)
self.conv2 = torch.nn.Conv2d(
in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1
)
def forward(self, x, _):
pow_out = torch.pow(self.conv(x), 2)
other2 = F.relu(pow_out)
conv_out2 = self.conv2(pow_out)
res = torch.add(conv_out2, pow_out)
res = res + other2
return res
# Written buffer is an ReinterpretView, we can't fuse inplace.
class Model_v4(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 32, 3, padding=1, bias=True)
self.linear = torch.nn.Linear(32 * 28, 32 * 28)
self.relu = torch.nn.ReLU()
def forward(self, x, y):
x = self.conv(self.relu(x))
y = self.linear(y)
y = torch.cat((y, y), 1)
y = torch.ops.aten.permute.default(y, [0, 2, 1]).reshape(1, 32, 28, 28)
return x + y
class Model_v5(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.relu = torch.nn.ReLU()
def forward(self, _, x):
x1 = self.relu(x)
return self.conv(x1) + x1
input = torch.randn(1, 3, 28, 28).to(memory_format=torch.channels_last)
others = [
torch.randn(1, 32, 28, 28).to(memory_format=torch.channels_last),
torch.randn(2, 32, 28, 28).to(memory_format=torch.channels_last),
torch.randn(1, 32, 28, 28).to(memory_format=torch.channels_last),
torch.randn(1, 14, 32 * 28),
torch.randn(1, 32, 28, 28).to(memory_format=torch.channels_last),
]
mod_v1 = Model_v1().to(memory_format=torch.channels_last).eval()
mod_v2 = Model_v2().to(memory_format=torch.channels_last).eval()
mod_v3 = Model_v3().to(memory_format=torch.channels_last).eval()
mod_v4 = Model_v4().to(memory_format=torch.channels_last).eval()
mod_v5 = Model_v5().to(memory_format=torch.channels_last).eval()
if include_ops is None:
include_ops = ["mkldnn._convolution_pointwise.binary"]
if exclude_ops is None:
exclude_ops = ["mkldnn._convolution_pointwise_.binary"]
for other, mod in zip(others, [mod_v1, mod_v2, mod_v3, mod_v4, mod_v5]):
self._test_code_common(mod, (input, other), include_ops, exclude_ops)
def test_conv2d_binary_fusion_failed(self):
# we don't support alpha !=1 case or other has different size with conv's output.
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1
)
def forward(self, x, other, alpha):
conv_out = self.conv(x)
return torch.add(conv_out, other, alpha=alpha)
# https://github.com/pytorch/pytorch/issues/100802.
# we can't do the fusion when add's inputs are same tensor.
class Model2(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
out = self.conv(x)
out = torch.add(out, out)
return out
# https://github.com/pytorch/pytorch/issues/101374.
# we can't do the fusion when add's inputs are mixed dtype.
class Model3(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
temp = self.conv(x)
other = torch.ones(temp.shape, dtype=torch.double)
out = torch.add(temp, other)
return out
input = torch.randn(1, 3, 28, 28).to(memory_format=torch.channels_last)
others = [
torch.randn(1, 32, 28, 28).to(memory_format=torch.channels_last),
torch.randn(32, 28, 28),
]
include_ops = ["mkldnn._convolution_pointwise"]
exclude_ops = [
"mkldnn._convolution_pointwise.binary",
"mkldnn._convolution_pointwise_.binary",
]
# case1
for other, alpha in zip(others, [0.1, 1.0]):
mod = Model().to(memory_format=torch.channels_last).eval()
self._test_code_common(mod, (input, other, alpha), include_ops, exclude_ops)
# case2:
mod = Model2().to(memory_format=torch.channels_last).eval()
self._test_code_common(mod, (input,), include_ops, exclude_ops)
# case3:
mod = Model3().to(memory_format=torch.channels_last).eval()
self._test_code_common(mod, (input,), include_ops, exclude_ops)
def test_reproduce_99842_issue(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
def forward(self, input_tensor):
x = self.conv(input_tensor)
x = F.relu(x + torch.ones(x.size()))
return x
input = torch.randn(1, 3, 14, 14)
mod = Model().eval()
include_ops = ["mkldnn._convolution_pointwise_.binary"]
self._test_code_common(mod, (input,), include_ops, [])
def test_reproduce_113440_issue_1(self):
class Mod(torch.nn.Module):
def __init__(
self,
add_fn,
**kwargs,
):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.conv2 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.add_fn = add_fn
self.relu = torch.nn.ReLU(inplace=True)
self.conv3 = torch.nn.Conv2d(6, 6, kernel_size=3, stride=1)
self.conv4 = torch.nn.Conv2d(6, 6, kernel_size=3, stride=1)
self.add_fn2 = add_fn
self.relu2 = torch.nn.ReLU(inplace=True)
self.use_relu = True
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x)
tmp = self.add_fn(x1, x2)
if self.use_relu:
tmp = self.relu(tmp)
tmp1 = self.conv3(tmp)
tmp2 = self.conv4(tmp)
res = self.add_fn2(tmp1, tmp2)
if self.use_relu:
res = self.relu2(res)
return res
with torch.no_grad():
example_inputs = (
torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(
1
),
)
example_inputs[0].get_device()
m = Mod(
lambda x, y: x.add_(y),
).eval()
om = torch.compile(m)
om(*example_inputs)
om(*example_inputs)
def test_reproduce_113440_issue_2(self):
class Mod(torch.nn.Module):
def __init__(
self,
add_fn,
**kwargs,
):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.conv2 = torch.nn.Conv2d(3, 6, kernel_size=3, stride=1)
self.add_fn = add_fn
self.relu = torch.nn.ReLU(inplace=True)
self.conv3 = torch.nn.Conv2d(6, 6, kernel_size=3, stride=1)
self.conv4 = torch.nn.Conv2d(6, 6, kernel_size=3, stride=1)
self.add_fn2 = add_fn
self.relu2 = torch.nn.ReLU(inplace=True)
self.conv5 = torch.nn.Conv2d(6, 6, kernel_size=3, stride=1)
self.conv6 = torch.nn.Conv2d(6, 6, kernel_size=3, stride=1)
self.conv7 = torch.nn.Conv2d(6, 6, kernel_size=1, stride=1)
self.add_fn3 = add_fn
self.relu3 = torch.nn.ReLU(inplace=True)
self.use_relu = True
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x)
tmp = self.add_fn(x1, x2)
if self.use_relu:
tmp = self.relu(tmp)
tmp1 = self.conv3(tmp)
res = self.relu2(tmp1)
return res
with torch.no_grad():
example_inputs = (
torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(
1
),
)
m = Mod(
lambda x, y: x.add_(y),
).eval()
om = torch.compile(m)
om(*example_inputs)
om(*example_inputs)
def test_reproduce_121253_issue(self):
class Mod(torch.nn.Module):
def __init__(self, weight, bias, beta, alpha):
super().__init__()
self.weight = weight
self.bias = bias
self.beta = beta
self.alpha = alpha
def forward(self, x):
return torch.addmm(
self.bias, x, self.weight, beta=self.beta, alpha=self.alpha
)
dtypes = [torch.float32]
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
dtypes.append(torch.bfloat16)
for dtype in dtypes:
linear_op = (
"mkl._mkl_linear"
if dtype == torch.float32
else "mkldnn._linear_pointwise"
)
for beta, alpha in zip([1.0, 0.1, 0.0], [1.0, 0.1, 1.0]):
weight = torch.randn(64, 64, dtype=dtype)
bias = torch.randn(64, dtype=dtype)
mod = Mod(weight, bias, beta, alpha).to(dtype).eval()
with torch.no_grad():
x = torch.randn(1, 64, dtype=dtype)
include_ops = []
exclude_ops = []
if (beta != 1.0 and beta != 0.0) or alpha != 1.0:
exclude_ops = [linear_op]
else:
include_ops = [linear_op]
self._test_code_common(mod, (x,), include_ops, exclude_ops)
@skipIfNoDynamoSupport
@skipIfRocm
def test_woq_int8(self):
class M(torch.nn.Module):
def forward(self, x, weight, scales):
return torch.nn.functional.linear(x, weight.to(dtype=x.dtype)) * scales
mod = M().eval()
x_shape = (1, 1, 256)
w_shape = (12, 256)
s_shape = 12
x_strides = [
(256, 256, 1), # linear dispatching to mm
(256, 32, 1), # linear dispatching to bmm
]
for x_stride in x_strides:
x = torch.randn(x_shape, dtype=torch.bfloat16).as_strided(x_shape, x_stride)
w = torch.randint(-128, 127, w_shape, dtype=torch.int8)
s = torch.randn(s_shape, dtype=torch.bfloat16)
def matcher_check_fn():
self.assertEqual(counters["inductor"]["woq_matcher_count"], 1)
self._test_common(
mod,
(x, w, s),
matcher_check_fn=matcher_check_fn,
check_quantization=False,
atol=0.001,
rtol=0.07,
)
@dynamo_config.patch({"dynamic_shapes": True, "assume_static_by_default": False})
class TestDynamicPatternMatcher(TestPatternMatcherBase):
_test_conv_unary_cpu_base = TestPatternMatcher._test_conv_unary_cpu_base
test_conv2d_unary_dynamic_shapes = TestPatternMatcher.test_conv2d_unary_cpu
test_conv3d_unary_dynamic_shapes = TestPatternMatcher.test_conv3d_unary_cpu
_test_conv_binary_base = TestPatternMatcher._test_conv_binary_base
test_conv2d_binary_dynamic_shapes = TestPatternMatcher.test_conv2d_binary
test_conv3d_binary_dynamic_shapes = TestPatternMatcher.test_conv3d_binary
test_linear_unary_dynamic_shapes = TestPatternMatcher.test_linear_unary
def test_conv_transpose2d_dynamic_shapes(self):
# We don't support conv_transpose2d for now.
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv_transpose2d = torch.nn.ConvTranspose2d(
3, 16, 3, stride=2, padding=1
)
def forward(self, x):
return self.conv_transpose2d(x)
x_shape = (1, 3, 28, 28)
mod = M().eval()
v = torch.randn(x_shape, dtype=torch.float32)
self._test_common(mod, (v,), 0, 0)
def test_multi_linear_share_same_input_dynamic(self):
# llama pattern.
class M(torch.nn.Module):
def __init__(
self,
):
super().__init__()
self.w1 = torch.nn.Linear(16, 16, bias=False)
self.w2 = torch.nn.Linear(16, 16, bias=False)
def forward(self, x):
return F.silu(self.w1(x)) * F.relu(self.w2(x))
dtypes = []
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
dtypes.append(torch.bfloat16)
if torch.ops.mkldnn._is_mkldnn_fp16_supported():
dtypes.append(torch.float16)
for dtype in dtypes:
mod = M().to(dtype).eval()
v = torch.randn(2, 4, 16).to(dtype)
# 1. view(match_count=4, match_nodes=4).
# 2. mm to packed linear(match_count=2, match_nodes=2).
# 3. view+linear+view to linear(match_count=2, match_nodes=6).
# 4. linear to linear+swish(match_count=1, match_nodes=2).
# 5. linear to linear+relu(match_count=1, match_nodes=5).
match_count = 10
match_nodes = 19
self._test_common(mod, (v,), match_count, match_nodes, rtol=1e-2, atol=1e-2)
def test_qconv2d_maxpool2d_linear_dynamic_cpu(self, include_ops=None):
r"""
This testcase will quantize a single Conv2d->Maxpool2d->Linear module
with dynamic batch size input.
"""
class M(torch.nn.Module):
def __init__(
self,
**kwargs,
):
super().__init__()
self.conv = torch.nn.Conv2d(
3, 16, (2, 2), stride=(1, 1), padding=(1, 1)
)
self.relu = torch.nn.ReLU()
self.maxpool2d = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1))
self.linear = torch.nn.Linear(16, 16)
def forward(self, x):
temp = self.relu(self.conv(x))
temp = self.maxpool2d(temp)
temp = self.avgpool(temp)
temp = torch.flatten(temp, 1)
return self.linear(temp)
mod = M().eval()
v = torch.randn((2, 3, 8, 8), dtype=torch.float32, requires_grad=False).add(1)
if include_ops is None:
include_ops = [
"torch.ops.onednn.qconv2d_pointwise",
"torch.ops.quantized.max_pool2d",
"torch.ops.onednn.qlinear_pointwise",
]
exclude_ops = []
self._test_code_common(
mod,
(v,),
include_ops,
exclude_ops,
check_quantization=True,
check_dynamic=True,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_qat_bn_conv2d(self):
r"""
This testcase will quantize a single BN Conv2d module with qat flow.
"""
class M(torch.nn.Module):
def __init__(
self,
):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)
self.bn1 = torch.nn.BatchNorm2d(3)
self.bn2 = torch.nn.BatchNorm2d(3)
def forward(self, x):
x = self.conv(self.bn1(x))
return self.bn2(x)
mod = M().train()
v = torch.randn((1, 3, 8, 8), dtype=torch.float32, requires_grad=True).add(1)
def matcher_check_fn():
self.assertEqual(
counters["inductor"]["qconv2d_weight_prepack_matcher_count"], 1
)
self._test_common(
mod,
(v,),
check_quantization=True,
is_qat=True,
matcher_check_fn=matcher_check_fn,
)
@skipIfNoDynamoSupport
@skipIfNoONEDNN
@skipIfRocm
def test_q_attention_block(self):
class SelfAttnLikeModule(torch.nn.Module):
def __init__(
self,
input_dim,
transpose_for_score=False,
num_attention_heads=None,
attention_head_size=None,
) -> None:
super().__init__()
self.input_dim = input_dim
self.q_proj = torch.nn.Linear(input_dim, input_dim, bias=False)
self.k_proj = torch.nn.Linear(input_dim, input_dim, bias=False)
self.v_proj = torch.nn.Linear(input_dim, input_dim, bias=False)
self.softmax = torch.nn.Softmax(dim=-1)
self.transpose_for_score = transpose_for_score
if self.transpose_for_score:
assert num_attention_heads is not None
assert attention_head_size is not None
self.num_attention_heads = num_attention_heads
self.attention_head_size = attention_head_size
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, x):
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
if self.transpose_for_score:
q = self.transpose_for_scores(q)
k = self.transpose_for_scores(k)
v = self.transpose_for_scores(v)
scores = torch.matmul(q, k.transpose(-1, -2)) / (self.input_dim**0.5)
attention = self.softmax(scores)
weighted = torch.matmul(attention, v)
return weighted
for annotate_matmul in [False, True]:
mod = SelfAttnLikeModule(
input_dim=64 * 16,
transpose_for_score=True,
num_attention_heads=16,
attention_head_size=64,
).eval()
v = torch.randn(2, 384, 1024)
def matcher_check_fn():
self.assertEqual(
counters["inductor"]["qlinear_weight_prepack_matcher_count"], 3
)
self.assertEqual(
counters["inductor"]["qlinear_unary_matcher_count"],
3 if annotate_matmul else 0,
)
quantizer = X86InductorQuantizer()
quantizer.set_global(xiq.get_default_x86_inductor_quantization_config())
if annotate_matmul:
quantizer.set_function_type_qconfig(
torch.matmul, quantizer.get_global_quantization_config()
)
self._test_common(
mod,
(v,),
check_quantization=True,
matcher_check_fn=matcher_check_fn,
quantizer=quantizer,
)
if __name__ == "__main__":
if IS_LINUX and HAS_CPU and torch.backends.mkldnn.is_available():
run_tests()