mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: As per title. Pull Request resolved: https://github.com/pytorch/pytorch/pull/61564 Reviewed By: astaff Differential Revision: D30338136 Pulled By: mruberry fbshipit-source-id: f01436fc90980544cdfa270feee16bb3dda21b93
293 lines
19 KiB
C++
293 lines
19 KiB
C++
#pragma once
|
|
|
|
// NB: Must be at the top of file to avoid including the deprecated "math.h".
|
|
// https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio
|
|
#ifdef _MSC_VER
|
|
#ifndef _USE_MATH_DEFINES
|
|
#define _USE_MATH_DEFINES
|
|
#endif
|
|
#include <cmath>
|
|
#endif
|
|
|
|
#include <torch/csrc/autograd/generated/Functions.h>
|
|
#include <ATen/ATen.h>
|
|
|
|
namespace torch {
|
|
namespace autograd {
|
|
namespace generated {
|
|
namespace details {
|
|
|
|
extern const char* kCudnnDoubleBackwardMsg;
|
|
|
|
// A simple way to imperatively compute index ranges for slots
|
|
// that have been flattened
|
|
struct IndexRangeGenerator {
|
|
IndexRange range(size_t range_size) {
|
|
i += range_size;
|
|
return {i - range_size, i};
|
|
}
|
|
size_t size() { return i; }
|
|
private:
|
|
size_t i = 0;
|
|
};
|
|
|
|
bool isFwGradDefined(const c10::optional<Tensor>& t);
|
|
Tensor toNonOptFwGrad(const c10::optional<Tensor>& t);
|
|
Tensor toNonOptPrimal(const c10::optional<Tensor>& t);
|
|
Tensor toNonOptTensor(const c10::optional<Tensor>& t);
|
|
|
|
bool any_variable_defined(const variable_list& variables);
|
|
void copy_range(variable_list& out, IndexRange range, const at::Tensor & t);
|
|
void copy_range(variable_list& out, IndexRange range, at::ArrayRef<at::Tensor> t);
|
|
at::Tensor copysign_tensor_self_backward(const Tensor & grad, const Tensor & self, const Tensor & result);
|
|
at::Tensor not_implemented(const char* name, const char* reason="");
|
|
std::vector<Tensor> not_implemented_list(const char* name, const char* reason="");
|
|
at::Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result);
|
|
at::Tensor maybe_multiply(const at::Tensor & t, const at::Scalar & s);
|
|
int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim);
|
|
Tensor restore_reduced_dims(const Tensor &output, IntArrayRef dims, bool keepdim);
|
|
Tensor scale_grad_by_count(const Tensor &grad, const Tensor &mask, IntArrayRef dims);
|
|
at::Tensor norm_backward(const at::Tensor & grad, const at::Tensor & self, const optional<at::Scalar> & p_, const at::Tensor & norm);
|
|
at::Tensor norm_backward(at::Tensor grad, const at::Tensor & self, const optional<at::Scalar> & p_, at::Tensor norm, at::IntArrayRef dim, bool keepdim);
|
|
at::Tensor linalg_vector_norm_backward(at::Tensor grad, const at::Tensor & self, const at::Scalar & ord, at::Tensor norm, const c10::optional<at::IntArrayRef> & opt_dim, bool keepdim);
|
|
at::Tensor pow_backward(at::Tensor grad, const at::Tensor & self, const at::Scalar & exponent_);
|
|
at::Tensor pow_backward_self(at::Tensor grad, const at::Tensor & self, const at::Tensor & exponent);
|
|
at::Tensor pow_backward_exponent(at::Tensor grad, const at::Tensor& self, const at::Tensor& exponent, at::Tensor result);
|
|
at::Tensor pow_backward_exponent(at::Tensor grad, const at::Scalar & base, const at::Tensor& exponent, at::Tensor result);
|
|
at::Tensor angle_backward(at::Tensor grad, const at::Tensor& self);
|
|
at::Tensor mul_tensor_backward(Tensor grad, Tensor other, ScalarType self_st);
|
|
at::Tensor div_tensor_self_backward(Tensor grad, Tensor other, ScalarType self_st);
|
|
at::Tensor div_tensor_other_backward(Tensor grad, Tensor self, Tensor other);
|
|
at::Tensor div_tensor_self_backward(Tensor grad, Tensor other, ScalarType self_st, const c10::optional<c10::string_view>& rounding_mode);
|
|
at::Tensor div_tensor_other_backward(Tensor grad, Tensor self, Tensor other, const c10::optional<c10::string_view>& rounding_mode);
|
|
at::Tensor mvlgamma_backward(at::Tensor grad, const at::Tensor & self, int64_t p);
|
|
at::Tensor permute_backwards(const at::Tensor & grad, at::IntArrayRef fwd_dims);
|
|
at::Tensor rad2deg_backward(const at::Tensor& grad);
|
|
at::Tensor deg2rad_backward(const at::Tensor& grad);
|
|
at::Tensor unsqueeze_multiple(const at::Tensor & t, at::IntArrayRef dim, size_t n_dims);
|
|
at::Tensor sum_backward(const at::Tensor & grad, at::IntArrayRef sizes, at::IntArrayRef dims, bool keepdim);
|
|
at::Tensor nansum_backward(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dims, bool keepdim);
|
|
std::vector<int64_t> reverse_list(const at::IntArrayRef list);
|
|
at::Tensor reverse_dim(const at::Tensor& t, int64_t dim);
|
|
at::Tensor prod_safe_zeros_backward(const at::Tensor &grad, const at::Tensor& inp, int64_t dim);
|
|
at::Tensor prod_backward(const at::Tensor& grad, const at::Tensor& input, const at::Tensor& result);
|
|
at::Tensor prod_backward(at::Tensor grad, const at::Tensor& input, at::Tensor result, int64_t dim, bool keepdim);
|
|
at::Tensor solve_jvp(const at::Tensor& input_primal, const at::Tensor& input_tangent, const at::Tensor& other_tangent, const at::Tensor& result);
|
|
at::Tensor solve_backward_self(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A);
|
|
at::Tensor solve_backward_A(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A, const at::Tensor & solution);
|
|
at::Tensor cumsum_backward(const at::Tensor & grad, int64_t dim);
|
|
at::Tensor logsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, at::IntArrayRef dim, bool keepdim);
|
|
at::Tensor logcumsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, int64_t dim);
|
|
at::Tensor unbind_backward(const variable_list& grads, int64_t dim);
|
|
at::Tensor unsqueeze_to(const at::Tensor & self, at::IntArrayRef sizes);
|
|
at::Tensor unsqueeze_to(const at::Tensor & self, int64_t dim, at::IntArrayRef sizes);
|
|
std::vector<at::Tensor> cat_tensors_backward(const at::Tensor & grad, const std::vector<std::vector<int64_t>> &sizes, const std::vector<ScalarType> &dtypes, int64_t dim);
|
|
at::Tensor clamp_backward(const at::Tensor & grad, const at::Tensor &self, const optional<at::Scalar>& min, const optional<at::Scalar>& max);
|
|
at::Tensor clamp_backward(const at::Tensor & grad, const at::Tensor &self, const at::Tensor& min, const at::Tensor& max);
|
|
std::tuple<at::Tensor, at::Tensor> clamp_backward_min_max(const at::Tensor& grad, const at::Tensor& self, const at::Tensor& min, const at::Tensor& max, const std::array<bool, 2>&);
|
|
at::IntArrayRef strides_or_error(const Tensor & input, c10::string_view const & input_name);
|
|
at::Tensor mm_mat1_backward(const Tensor & grad, const Tensor & mat2, at::IntArrayRef mat1_sizes, at::IntArrayRef mat1_strides, const Scalar & alpha);
|
|
at::Tensor mm_mat2_backward(const at::Tensor & grad, const at::Tensor & mat1, at::IntArrayRef sizes, at::IntArrayRef strides, const at::Scalar & alpha);
|
|
at::Tensor _sparse_addmm_sparse_backward(const at::Tensor& grad, const at::Tensor& sparse_, const at::Tensor& dense, const at::Scalar& alpha);
|
|
at::Tensor sparse_sparse_matmul_backward(const at::Tensor& grad, const at::Tensor& mat1, const at::Tensor& mat2,int64_t grad_order);
|
|
at::Tensor renorm_backward(const at::Tensor & grad, const at::Tensor & self, const at::Scalar& p, int64_t dim, const at::Scalar& maxnorm);
|
|
at::Tensor repeat_backward(at::Tensor grad, at::IntArrayRef repeats, at::IntArrayRef input_shape);
|
|
at::Tensor _fused_dropout_backward(at::Tensor grad, at::Tensor mask, double p1m);
|
|
at::Tensor evenly_distribute_backward(at::Tensor grad, const at::Tensor & input, const at::Tensor & value);
|
|
at::Tensor sgn_backward(Tensor result, Tensor grad, Tensor self);
|
|
at::Tensor var_backward(at::Tensor grad, const at::Tensor& self, c10::optional<IntArrayRef> dim, c10::optional<int64_t> correction, bool keepdim);
|
|
at::Tensor std_backward(const at::Tensor& result, const at::Tensor& grad, const at::Tensor& self, c10::optional<IntArrayRef> dim, c10::optional<int64_t> correction, bool keepdim);
|
|
at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, at::IntArrayRef dim, bool keepdim);
|
|
at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, int64_t numel);
|
|
at::Tensor var_std_mean_backward(const variable_list& grads, const at::Tensor& self, const at::Tensor& r1, const at::Tensor& r2, c10::optional<IntArrayRef> dim, c10::optional<int64_t> correction, bool keepdim, bool is_std);
|
|
at::Tensor masked_scatter_backward(const at::Tensor & grad, const at::Tensor & mask, at::IntArrayRef sizes);
|
|
at::Tensor cholesky_backward(at::Tensor grad, bool upper, at::Tensor L);
|
|
at::Tensor cholesky_inverse_backward(at::Tensor grad, at::Tensor L, bool upper, at::Tensor inverse);
|
|
at::Tensor split_with_sizes_backward(const std::vector<torch::autograd::Variable> &grads,
|
|
IntArrayRef split_sizes, int64_t dim, IntArrayRef sizes, const at::TensorOptions &options);
|
|
at::Tensor split_backward(const std::vector<torch::autograd::Variable> &grads, int64_t split_size, int64_t dim, at::IntArrayRef sizes, const at::TensorOptions &options);
|
|
at::Tensor max_pool_double_backward(const at::Tensor & grad, const at::Tensor & indices, int dim);
|
|
at::Tensor glu_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, int64_t dim);
|
|
at::Tensor glu_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, int64_t dim);
|
|
at::Tensor infinitely_differentiable_silu_backward(const at::Tensor& grad_output, const at::Tensor& input);
|
|
at::Tensor infinitely_differentiable_mish_backward(const at::Tensor& grad_output, const at::Tensor& input);
|
|
Tensor infinitely_differentiable_logit_backward(const Tensor& grad, const Tensor& self, c10::optional<double> eps);
|
|
at::Tensor kl_div_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, bool log_target);
|
|
Tensor binary_cross_entropy_target_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& target,
|
|
const c10::optional<Tensor>& weight,
|
|
int64_t reduction);
|
|
at::Tensor binary_cross_entropy_with_logits_target_backward(const at::Tensor& grad_output, const at::Tensor& self, const at::Tensor& target, const c10::optional<at::Tensor>& weight, const c10::optional<at::Tensor>& pos_weight, int64_t reduction);
|
|
at::Tensor log_sigmoid_double_backward(const at::Tensor & grad, const at::Tensor & input);
|
|
at::Tensor softmax_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, int dim, const at::Tensor & output);
|
|
at::Tensor log_softmax_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, int dim, const at::Tensor & output);
|
|
at::Tensor binary_cross_entropy_double_backward(const at::Tensor & grad_output, const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional<at::Tensor>& weight, int64_t reduction);
|
|
at::Tensor binary_cross_entropy_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional<at::Tensor>& weight, int64_t reduction);
|
|
at::Tensor l1_loss_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
|
|
at::Tensor l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
|
|
at::Tensor smooth_l1_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double beta);
|
|
at::Tensor smooth_l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double beta);
|
|
at::Tensor huber_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double delta);
|
|
at::Tensor huber_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double delta);
|
|
at::Tensor mse_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, int64_t reduction);
|
|
at::Tensor mse_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
|
|
at::Tensor soft_margin_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
|
|
at::Tensor soft_margin_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
|
|
at::Tensor softplus_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Scalar& beta, const at::Scalar& threshold);
|
|
at::Tensor logdet_backward(const at::Tensor & grad, const at::Tensor& self, const at::Tensor& logdet);
|
|
at::Tensor slogdet_backward(const at::Tensor& grad_logabsdet, const at::Tensor& self, const at::Tensor& signdet, const at::Tensor& logabsdet);
|
|
at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self);
|
|
at::Tensor sinc_backward(const at::Tensor& grad, const at::Tensor& self);
|
|
at::Tensor sparse_constructor_values_backward(const at::Tensor& sparse_grad_out, const at::Tensor& indices);
|
|
at::Tensor embedding_dense_double_backward(const at::Tensor & grad, const at::Tensor & indices, int64_t padding_idx);
|
|
at::Tensor index_backward(at::Tensor zeros_like_self, const torch::List<c10::optional<Tensor>>& indices, const at::Tensor& grad);
|
|
at::Tensor _cudnn_ctc_loss_backward(const at::Tensor& grad_out, const at::Tensor& loss, const at::Tensor& raw_grad, bool zero_infinity);
|
|
at::Tensor elu_double_backward(const Tensor& grad, const Tensor& grad_output, const Scalar& alpha, const Scalar& scale, const Scalar& input_scale, bool is_result, const Tensor& self_or_result);
|
|
|
|
Tensor svd_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
|
|
bool some, bool compute_uv, const Tensor& raw_u, const Tensor& sigma, const Tensor& raw_v);
|
|
Tensor slice_backward_wrapper(
|
|
const at::Tensor& grad,
|
|
const c10::IntArrayRef& input_sizes,
|
|
int64_t dim,
|
|
c10::optional<int64_t> start,
|
|
c10::optional<int64_t> end,
|
|
int64_t step);
|
|
Tensor linalg_eig_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
|
|
const Tensor& L, const Tensor& V);
|
|
Tensor eigh_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
|
|
bool eigenvectors, const Tensor& L, const Tensor& V);
|
|
std::tuple<Tensor, Tensor> triangular_solve_backward(
|
|
const Tensor & grad_x, const Tensor & grad_m,
|
|
const Tensor & b, const Tensor & a, const Tensor & x,
|
|
const bool upper, const bool transpose, const bool unitriangular,
|
|
std::array<bool, 2> output_mask);
|
|
std::tuple<Tensor, Tensor, Tensor> _trilinear_backward(const Tensor& grad_out, const Tensor& i1, const Tensor& i2, const Tensor& i3,
|
|
IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3,
|
|
IntArrayRef sumdim, std::array<bool, 3> grad_mask);
|
|
Tensor linalg_qr_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
|
|
c10::string_view mode, const Tensor& Q, const Tensor& R);
|
|
Tensor eig_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
|
|
bool eigenvectors, const Tensor& lambda, const Tensor& v);
|
|
Tensor linalg_det_backward(const Tensor & grad, const Tensor& self, const Tensor& det);
|
|
std::tuple<Tensor, Tensor, Tensor> batchnorm_double_backward(
|
|
const Tensor & input,
|
|
const c10::optional<Tensor> & gamma,
|
|
const Tensor & ggI,
|
|
const Tensor & ggG,
|
|
const Tensor & ggB,
|
|
const Tensor & gO,
|
|
const c10::optional<Tensor> & running_mean,
|
|
const c10::optional<Tensor> & running_var,
|
|
bool training,
|
|
double eps,
|
|
const c10::optional<Tensor> & save_mean,
|
|
const c10::optional<Tensor> & save_invstd,
|
|
std::array<bool,3> output_mask);
|
|
std::tuple<Tensor, Tensor> _euclidean_dist_backward(const Tensor & grad, const Tensor & x1, const Tensor & x2, const Tensor & res);
|
|
Tensor kl_div_target_backward(Tensor grad_output, Tensor self, Tensor target, int64_t reduction, bool log_target);
|
|
Tensor fft_backward(const Tensor& self, const Tensor& grad, int64_t signal_ndim,
|
|
bool complex_input, bool complex_output,
|
|
bool inverse, IntArrayRef checked_signal_sizes,
|
|
int64_t normalization, bool onesided,
|
|
IntArrayRef output_sizes);
|
|
Tensor fft_r2c_backward(const Tensor& grad, IntArrayRef dim, int64_t normalization,
|
|
bool onesided, int64_t last_dim_size);
|
|
Tensor fft_c2r_backward(const Tensor& grad, IntArrayRef dim, int64_t normalization);
|
|
Tensor constant_pad_nd_backward(const Tensor& grad, IntArrayRef pad);
|
|
std::tuple<Tensor, Tensor> cholesky_solve_backward(
|
|
const Tensor& grad_x, const Tensor& self,
|
|
const Tensor& input2, const Tensor& result, const bool upper);
|
|
std::tuple<Tensor, Tensor, Tensor>
|
|
infinitely_differentiable_native_group_norm_backward(
|
|
const Tensor& dY,
|
|
const Tensor& dmean,
|
|
const Tensor& drstd,
|
|
const Tensor& X,
|
|
const Tensor& mean,
|
|
const Tensor& rstd,
|
|
const c10::optional<Tensor>& gamma,
|
|
int64_t N,
|
|
int64_t C,
|
|
int64_t HxW,
|
|
int64_t group,
|
|
double eps,
|
|
std::array<bool, 3> grad_input_mask);
|
|
std::tuple<Tensor, Tensor, Tensor> prelu_double_backward(
|
|
const Tensor & grad_grad_input,
|
|
const Tensor & grad_grad_weight,
|
|
const Tensor & grad_out,
|
|
const Tensor & input_,
|
|
const Tensor & weight_);
|
|
Tensor as_strided_backward(Tensor grad, TensorGeometry input_geometry, IntArrayRef sizes, IntArrayRef strides, optional<int64_t> storage_offset_);
|
|
std::tuple<Tensor, Tensor> atan2_backward(const Tensor& grad, const Tensor& self, const Tensor& other, std::array<bool, 2> output_mask);
|
|
std::tuple<Tensor, Tensor, Tensor> layer_norm_double_backward(
|
|
const Tensor & input,
|
|
const c10::optional<Tensor> & gamma,
|
|
const Tensor & ggI,
|
|
const Tensor & ggG,
|
|
const Tensor & ggB,
|
|
const Tensor & gO,
|
|
const Tensor & save_mean,
|
|
const Tensor & save_invstd,
|
|
IntArrayRef normalized_shape,
|
|
std::array<bool,3> output_mask);
|
|
|
|
std::tuple<Tensor, Tensor> householder_product_backward(const Tensor& grad, const Tensor& input, const Tensor& tau);
|
|
std::tuple<Tensor, Tensor> polar_backward(
|
|
const Tensor& grad,
|
|
const Tensor& result);
|
|
Tensor i1_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& result);
|
|
Tensor i1e_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& result);
|
|
std::tuple<Tensor, Tensor> lu_solve_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& LU_data,
|
|
const Tensor& LU_pivots
|
|
);
|
|
Tensor lu_unpack_backward(
|
|
const variable_list& grads,
|
|
const Tensor& LU_data,
|
|
bool unpack_data
|
|
);
|
|
|
|
Tensor _det_lu_based_helper_backward(
|
|
const Tensor& det_grad,
|
|
const Tensor& det,
|
|
const Tensor& self,
|
|
const Tensor& lu,
|
|
const Tensor& pivs
|
|
);
|
|
|
|
Tensor lu_backward_base(
|
|
const variable_list& grads,
|
|
const Tensor& self,
|
|
const Tensor& P,
|
|
const Tensor& L,
|
|
const Tensor& U
|
|
);
|
|
Tensor _lu_with_info_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& LU,
|
|
const Tensor& pivs
|
|
);
|
|
|
|
Tensor cat_jvp(at::TensorList tensors, int64_t dim);
|
|
Tensor cumprod_jvp(Tensor self_t, Tensor self_p, Tensor result, int dim);
|
|
Tensor gather_with_keepdimed_indices(const Tensor& input, int64_t dim, const Tensor& indices, bool keepdim);
|
|
Tensor evenly_read_jvp(const Tensor& fw_grad, const Tensor & input, const Tensor & value);
|
|
|
|
} // namespace details
|
|
} // namespace generated
|
|
} // namespace autograd
|
|
} // namespace torch
|