pytorch/torch/_dynamo/__init__.py
Edward Z. Yang 585dbfa583 Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-03 06:29:57 +00:00

138 lines
4.1 KiB
Python

import torch
from . import convert_frame, eval_frame, resume_execution
from .backends.registry import list_backends, lookup_backend, register_backend
from .callback import callback_handler, on_compile_end, on_compile_start
from .code_context import code_context
from .convert_frame import replay
from .decorators import (
allow_in_graph,
assume_constant_result,
disable,
disallow_in_graph,
forbid_in_graph,
graph_break,
mark_dynamic,
mark_static,
mark_static_address,
maybe_mark_dynamic,
run,
set_stance,
substitute_in_graph,
)
from .eval_frame import (
_reset_guarded_backend_cache,
explain,
export,
is_dynamo_supported,
is_inductor_supported,
optimize,
optimize_assert,
OptimizedModule,
reset_code,
)
from .external_utils import is_compiling
from .mutation_guard import GenerationTracker
from .pgo import reset_code_state
from .utils import graph_break_reasons, guard_failures, orig_code_map, reset_frame_count
# Register polyfill functions
from .polyfills import loader as _ # usort: skip # noqa: F401
__all__ = [
"allow_in_graph",
"assume_constant_result",
"disallow_in_graph",
"forbid_in_graph",
"substitute_in_graph",
"graph_break",
"mark_dynamic",
"maybe_mark_dynamic",
"mark_static",
"mark_static_address",
"optimize",
"optimize_assert",
"export",
"explain",
"run",
"replay",
"disable",
"set_stance",
"reset",
"OptimizedModule",
"is_compiling",
"register_backend",
"list_backends",
"lookup_backend",
]
if torch.manual_seed is torch.random.manual_seed:
import torch.jit._builtins
# Wrap manual_seed with the disable decorator.
# Can't do it at its implementation due to dependency issues.
torch.manual_seed = torch._disable_dynamo(torch.manual_seed)
# Add the new manual_seed to the builtin registry.
torch.jit._builtins._register_builtin(torch.manual_seed, "aten::manual_seed")
def reset() -> None:
"""
Clear all compile caches and restore initial state. This function is intended
to reset Dynamo's state *as if* you had started a fresh process invocation, which
makes it good for testing scenarios where you want to behave as if you started
a new process. It does NOT affect any file system caches.
NB: this does NOT reset logging state. Don't use this to test logging
initialization/reinitialization.
"""
# TODO: https://github.com/pytorch/pytorch/issues/139200
import logging
log = logging.getLogger(__name__)
log.info("torch._dynamo.reset")
with convert_frame.compile_lock:
reset_code_caches()
convert_frame.input_codes.clear()
reset_code_state()
convert_frame.output_codes.clear()
orig_code_map.clear()
guard_failures.clear()
graph_break_reasons.clear()
resume_execution.ContinueExecutionCache.cache.clear()
_reset_guarded_backend_cache()
reset_frame_count()
torch._C._dynamo.compiled_autograd.clear_cache()
convert_frame.FRAME_COUNTER = 0
convert_frame.FRAME_COMPILE_COUNTER.clear()
callback_handler.clear()
GenerationTracker.clear()
torch._dynamo.utils.warn_once_cache.clear()
torch._dynamo.utils.user_obj_id_to_weakref.clear()
torch._C._autograd._saved_tensors_hooks_set_tracing(False)
def reset_code_caches() -> None:
"""
Clears in-memory code cache, which is what stores compiled products. This
resets less state than :func:`reset` and is mostly only used for testing
purposes.
"""
# TODO: https://github.com/pytorch/pytorch/issues/139200
import logging
log = logging.getLogger(__name__)
log.info("torch._dynamo.reset_code_caches")
"""Clear compile caches that are keyed by code objects"""
with convert_frame.compile_lock:
reset_code_state()
for weak_code in (
convert_frame.input_codes.seen + convert_frame.output_codes.seen
):
code = weak_code()
if code:
reset_code(code)
code_context.clear()