mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Note that this reverts the change from https://github.com/pytorch/pytorch/pull/137815 as well which is not needed anymore! Without this, you create an unbeakable reference cycle. It is unbreakable because part of the cycle is through the autograd graph which we cannot traverse. Pull Request resolved: https://github.com/pytorch/pytorch/pull/137890 Approved by: https://github.com/atalman, https://github.com/huydhn, https://github.com/Skylion007
1014 lines
39 KiB
Python
1014 lines
39 KiB
Python
# Owner(s): ["module: masked operators"]
|
|
|
|
import torch
|
|
import unittest
|
|
from torch.testing._internal.common_utils import (
|
|
decorateIf,
|
|
TestCase,
|
|
run_tests,
|
|
make_tensor,
|
|
parametrize,
|
|
instantiate_parametrized_tests,
|
|
)
|
|
from torch.testing._internal.common_device_type import (
|
|
instantiate_device_type_tests,
|
|
ops,
|
|
)
|
|
from torch.testing._internal.common_methods_invocations import (
|
|
SampleInput,
|
|
binary_ufuncs,
|
|
reduction_ops,
|
|
unary_ufuncs,
|
|
)
|
|
|
|
from torch.masked import as_masked_tensor, masked_tensor, _combine_input_and_mask
|
|
from torch.masked.maskedtensor.core import _masks_match, _tensors_match
|
|
from torch.masked.maskedtensor.unary import NATIVE_INPLACE_UNARY_FNS, NATIVE_UNARY_FNS, UNARY_NAMES
|
|
from torch.masked.maskedtensor.binary import NATIVE_BINARY_FNS, NATIVE_INPLACE_BINARY_FNS, BINARY_NAMES
|
|
from torch.masked.maskedtensor.reductions import REDUCE_NAMES
|
|
|
|
|
|
def _compare_mt_t(mt_result, t_result, rtol=1e-05, atol=1e-05):
|
|
mask = mt_result.get_mask()
|
|
mt_result_data = mt_result.get_data()
|
|
if mask.layout in {torch.sparse_coo, torch.sparse_csr}:
|
|
mask = mask.to_dense()
|
|
if mt_result_data.layout in {torch.sparse_coo, torch.sparse_csr}:
|
|
mt_result_data = mt_result_data.to_dense()
|
|
a = mt_result_data.detach().masked_fill_(~mask, 0)
|
|
b = t_result.detach().masked_fill_(~mask, 0)
|
|
if not _tensors_match(a, b, exact=False, rtol=rtol, atol=atol):
|
|
raise ValueError("The data in MaskedTensor a and Tensor b do not match")
|
|
|
|
def _compare_mts(mt1, mt2, rtol=1e-05, atol=1e-08):
|
|
mt_data1 = mt1.get_data()
|
|
mt_data2 = mt2.get_data()
|
|
if mt_data1.layout != mt_data2.layout:
|
|
raise ValueError("mt1's data and mt2's data do not have the same layout. "
|
|
f"mt1.get_data().layout = {mt_data1.layout} while mt2.get_data().layout = {mt_data2.layout}")
|
|
|
|
mask = mt1.get_mask()
|
|
mask2 = mt2.get_mask()
|
|
if not _masks_match(mt1, mt2):
|
|
raise ValueError("mt1 and mt2 must have matching masks")
|
|
if mask.layout != mask2.layout:
|
|
raise ValueError("mt1's mask and mt2's mask do not have the same layout. "
|
|
f"mt1.get_mask().layout = {mask.layout} while mt2.get_mask().layout = {mask2.layout}")
|
|
if mask.layout in {torch.sparse_coo, torch.sparse_csr}:
|
|
mask = mask.to_dense()
|
|
|
|
if mt_data1.layout in {torch.sparse_coo, torch.sparse_csr}:
|
|
mt_data1 = mt_data1.to_dense()
|
|
mt_data2 = mt_data2.to_dense()
|
|
a = mt_data1.detach().masked_fill_(~mask, 0)
|
|
b = mt_data2.detach().masked_fill_(~mask, 0)
|
|
|
|
if not _tensors_match(a, b, exact=False, rtol=rtol, atol=atol):
|
|
raise ValueError("The data in MaskedTensor mt1 and MaskedTensor mt2 do not match")
|
|
|
|
def _compare_forward_backward(data, mask, fn):
|
|
mt = masked_tensor(data, mask, requires_grad=True)
|
|
masked_res = fn(mt)
|
|
masked_res.sum().backward()
|
|
|
|
t = data.masked_fill(~mask, float("-inf")).detach().clone().requires_grad_()
|
|
tensor_res = fn(t)
|
|
tensor_res.sum().backward()
|
|
|
|
_compare_mt_t(masked_res, tensor_res)
|
|
_compare_mt_t(mt.grad, t.grad, atol=1e-06)
|
|
|
|
def _create_random_mask(shape, device):
|
|
return make_tensor(shape, device=device, dtype=torch.bool)
|
|
|
|
def _generate_sample_data(
|
|
device="cpu", dtype=torch.float, requires_grad=True, layout=torch.strided
|
|
):
|
|
assert layout in {
|
|
torch.strided,
|
|
torch.sparse_coo,
|
|
torch.sparse_csr,
|
|
}, "Layout must be strided/sparse_coo/sparse_csr"
|
|
shapes = [
|
|
[],
|
|
[2],
|
|
[3, 5],
|
|
[3, 2, 1, 2],
|
|
]
|
|
inputs = []
|
|
for s in shapes:
|
|
data = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad) # type: ignore[arg-type]
|
|
mask = _create_random_mask(s, device)
|
|
if layout == torch.sparse_coo:
|
|
mask = mask.to_sparse_coo().coalesce()
|
|
data = data.sparse_mask(mask).requires_grad_(requires_grad)
|
|
elif layout == torch.sparse_csr:
|
|
if data.ndim != 2 and mask.ndim != 2:
|
|
continue
|
|
mask = mask.to_sparse_csr()
|
|
data = data.sparse_mask(mask)
|
|
inputs.append(SampleInput(data, kwargs={"mask": mask}))
|
|
return inputs
|
|
|
|
def _fix_fn_name(fn_name):
|
|
if fn_name[-1] == "_":
|
|
fn_name = fn_name[:-1]
|
|
return fn_name
|
|
|
|
|
|
class TestBasics(TestCase):
|
|
def test_invalid_tensor_inputs(self, device):
|
|
data = torch.randn((3, 4), device=device)
|
|
mask = _create_random_mask((3, 4), device=device)
|
|
mt = masked_tensor(data, mask)
|
|
|
|
with self.assertRaisesRegex(TypeError, "data must be a Tensor"):
|
|
masked_tensor(mt, mask)
|
|
with self.assertRaisesRegex(TypeError, "data must be a Tensor"):
|
|
masked_tensor(0, mask)
|
|
with self.assertRaisesRegex(TypeError, "mask must be a Tensor"):
|
|
masked_tensor(data, mt)
|
|
with self.assertRaisesRegex(TypeError, "mask must be a Tensor"):
|
|
masked_tensor(data, 0)
|
|
|
|
def test_diff_layouts(self, device):
|
|
data = torch.randn((3, 4), device=device).to_sparse_coo()
|
|
mask = _create_random_mask((3, 4), device=device)
|
|
with self.assertRaisesRegex(TypeError, "data and mask must have the same layout"):
|
|
masked_tensor(data, mask)
|
|
|
|
def test_diff_dim(self, device):
|
|
data = torch.randn((3, 4, 5), device=device)
|
|
mask = _create_random_mask((3, 4), device=device)
|
|
with self.assertRaisesRegex(ValueError, "data.dim\\(\\) must equal mask.dim\\(\\)"):
|
|
masked_tensor(data, mask)
|
|
|
|
def test_diff_sizes(self, device):
|
|
data = torch.randn((3, 4), device=device)
|
|
mask = _create_random_mask((3, 3), device=device)
|
|
with self.assertRaisesRegex(ValueError, "data.size\\(\\) must equal mask.size\\(\\)"):
|
|
masked_tensor(data, mask)
|
|
|
|
def test_grad_warning(self, device):
|
|
data = torch.randn((3, 4), device=device, requires_grad=True)
|
|
mask = _create_random_mask((3, 4), device=device)
|
|
msg = "It is not recommended to create a MaskedTensor with a tensor that requires_grad."
|
|
with self.assertWarnsRegex(UserWarning, msg):
|
|
mt = masked_tensor(data, mask)
|
|
|
|
def test_add(self, device):
|
|
data = torch.arange(5.0, device=device)
|
|
mask = torch.tensor([True, True, False, True, False], device=device)
|
|
m0 = masked_tensor(data, mask)
|
|
m1 = masked_tensor(data, ~mask)
|
|
with self.assertRaisesRegex(ValueError, "Input masks must match."):
|
|
m0 + m1
|
|
_compare_mts(m0 + m0, masked_tensor(torch.tensor([0., 2, 0, 6, 0], device=device), mask))
|
|
|
|
def test_softmax(self, device):
|
|
data = torch.randn((3, 4), device=device) * 0.1
|
|
mask = torch.tensor(
|
|
[
|
|
[True, True, True, False],
|
|
[False, True, False, True],
|
|
[True, True, False, False],
|
|
],
|
|
device=device
|
|
)
|
|
|
|
_compare_forward_backward(data, mask, lambda t: torch.softmax(t, -1))
|
|
|
|
def test_where(self, device):
|
|
data = torch.tensor([-10.0, -5, 0, 5, 10, 50, 60, 70, 80, 90, 100], device=device)
|
|
mask = data < 0
|
|
|
|
mx = masked_tensor(data, mask, requires_grad=True)
|
|
my = masked_tensor(torch.ones_like(data), ~mask, requires_grad=True)
|
|
masked_res = torch.where(mask, torch.exp(mx), my)
|
|
masked_res.sum().backward()
|
|
|
|
x = data.detach().clone().requires_grad_()
|
|
y = torch.ones_like(x, device=device, requires_grad=True)
|
|
tensor_res = torch.where(mask, torch.exp(x), y)
|
|
tensor_res.sum().backward()
|
|
|
|
_compare_mt_t(masked_res, tensor_res)
|
|
_compare_mt_t(mx.grad, x.grad)
|
|
_compare_mt_t(my.grad, y.grad)
|
|
|
|
def test_unfold(self, device):
|
|
data = torch.rand(5, 5, device=device)
|
|
mask = torch.rand(5, 5, device=device) > 0.5
|
|
_compare_forward_backward(data, mask, lambda t: t.unfold(1, 2, 2))
|
|
|
|
def test_nn_unfold(self, device):
|
|
data = torch.rand(2, 5, 3, 4, device=device)
|
|
mask = torch.rand(2, 5, 3, 4, device=device) > 0.5
|
|
_compare_forward_backward(data, mask, lambda t: torch.nn.functional.unfold(t, kernel_size=(2, 3)))
|
|
|
|
def test_stack(self, device):
|
|
masked_tensors = [
|
|
masked_tensor(
|
|
torch.rand(2, 5, 3, 4, device=device),
|
|
torch.rand(2, 5, 3, 4, device=device) > 0.5,
|
|
requires_grad=True,
|
|
) for _ in range(3)
|
|
]
|
|
|
|
data_tensors = [mt.get_data().detach().clone().requires_grad_() for mt in masked_tensors]
|
|
masked_res = torch.stack(masked_tensors)
|
|
tensor_res = torch.stack(data_tensors)
|
|
|
|
masked_res.sum().backward()
|
|
tensor_res.sum().backward()
|
|
_compare_mt_t(masked_res, tensor_res)
|
|
for mt, t in zip(masked_tensors, data_tensors):
|
|
_compare_mt_t(mt.grad, t.grad, atol=1e-06)
|
|
|
|
def test_to_sparse(self, device):
|
|
for sample in _generate_sample_data(device=device):
|
|
data = sample.input
|
|
mask = sample.kwargs["mask"]
|
|
mt = masked_tensor(data.clone().detach(), mask, requires_grad=True)
|
|
|
|
sparse_mt = mt.to_sparse()
|
|
data.to_sparse().to_dense().sum().backward()
|
|
sparse_mt.to_dense().sum().backward()
|
|
|
|
_compare_mt_t(sparse_mt, data)
|
|
_compare_mt_t(mt.grad, data.grad)
|
|
|
|
def test_to_dense(self, device):
|
|
samples = _generate_sample_data(
|
|
device=device,
|
|
layout=torch.sparse_coo
|
|
) + _generate_sample_data(device=device, layout=torch.sparse_csr)
|
|
for sample in samples:
|
|
data = sample.input
|
|
mask = sample.kwargs["mask"]
|
|
mt = masked_tensor(data, mask, requires_grad=True)
|
|
|
|
dense_data = data.to_dense().detach().clone().requires_grad_(True)
|
|
dense_mt = mt.to_dense()
|
|
dense_data.sum().backward()
|
|
dense_mt.sum().backward()
|
|
|
|
_compare_mt_t(dense_mt, dense_data)
|
|
_compare_mt_t(mt.grad.to_dense(), dense_data.grad)
|
|
|
|
def test_to_dense_and_sparse_coo(self, device):
|
|
for sample in _generate_sample_data(device=device, layout=torch.strided):
|
|
data = sample.input
|
|
mask = sample.kwargs["mask"]
|
|
ms = mask.to_sparse_coo().coalesce()
|
|
|
|
mt = masked_tensor(data, mask, requires_grad=True)
|
|
mts = masked_tensor(data.sparse_mask(ms), ms, requires_grad=True)
|
|
|
|
converted = mt.to_sparse().to_dense()
|
|
converted.sum().backward()
|
|
|
|
converted2 = mts.to_dense()
|
|
converted2.sum().backward()
|
|
|
|
_compare_mts(converted, converted2)
|
|
_compare_mts(mt.grad, mts.grad.to_dense())
|
|
|
|
def test_to_dense_and_sparse_csr(self, device):
|
|
for sample in _generate_sample_data(device=device, layout=torch.strided):
|
|
data = sample.input
|
|
mask = sample.kwargs["mask"]
|
|
if data.ndim != 2:
|
|
continue
|
|
ms = mask.to_sparse_csr()
|
|
|
|
mt = masked_tensor(data, mask, requires_grad=True)
|
|
mts = masked_tensor(data.sparse_mask(ms), ms, requires_grad=True)
|
|
|
|
converted = mt.to_sparse_csr().to_dense()
|
|
converted.sum().backward()
|
|
|
|
converted2 = mts.to_dense()
|
|
converted2.sum().backward()
|
|
|
|
_compare_mts(converted, converted2)
|
|
_compare_mts(mt.grad, mts.grad.to_dense())
|
|
|
|
def test_invalid_sparse_layout(self, device):
|
|
data = torch.randn((3, 4), device=device).to_sparse_csc()
|
|
mask = _create_random_mask((3, 4), device=device).to_sparse_csc()
|
|
with self.assertRaisesRegex(TypeError, "data layout of torch.sparse_csc is not supported"):
|
|
masked_tensor(data, mask)
|
|
|
|
def test_invalid_sparse_coo_values(self, device):
|
|
v = torch.tensor([3, 4, 5], dtype=torch.float32)
|
|
i1 = torch.tensor([[0, 1, 1], [2, 0, 2]])
|
|
i2 = torch.tensor([[0, 1, 1], [2, 1, 2]])
|
|
|
|
t = torch.sparse_coo_tensor(i1, v, (2, 4), device=device)
|
|
mask = torch.sparse_coo_tensor(i2, torch.tensor([True, True, True]), (2, 4), device=device)
|
|
|
|
msg = "data and mask are both sparse COO tensors but do not have the same indices."
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
masked_tensor(t, mask)
|
|
|
|
def test_invalid_sparse_csr_values(self, device):
|
|
crow_indices1 = [0, 2, 3]
|
|
crow_indices2 = [0, 1, 3]
|
|
col_indices1 = [0, 1, 2]
|
|
col_indices2 = [1, 2, 3]
|
|
|
|
values = [2, 3, 4]
|
|
mask_values = [True, True, True]
|
|
|
|
t1 = torch.sparse_csr_tensor(
|
|
torch.tensor(crow_indices1, dtype=torch.int64),
|
|
torch.tensor(col_indices1, dtype=torch.int64),
|
|
torch.tensor(values),
|
|
size=(2, 4)
|
|
)
|
|
mask1 = torch.sparse_csr_tensor(
|
|
torch.tensor(crow_indices2, dtype=torch.int64),
|
|
torch.tensor(col_indices1, dtype=torch.int64),
|
|
torch.tensor(mask_values),
|
|
dtype=torch.bool,
|
|
size=(2, 4),
|
|
)
|
|
t2 = torch.sparse_csr_tensor(
|
|
torch.tensor(crow_indices2, dtype=torch.int64),
|
|
torch.tensor(col_indices1, dtype=torch.int64),
|
|
torch.tensor(values),
|
|
size=(2, 4),
|
|
)
|
|
mask2 = torch.sparse_csr_tensor(
|
|
torch.tensor(crow_indices2, dtype=torch.int64),
|
|
torch.tensor(col_indices2, dtype=torch.int64),
|
|
torch.tensor(mask_values),
|
|
dtype=torch.bool,
|
|
size=(2, 4),
|
|
)
|
|
|
|
msg = "data and mask are both sparse CSR tensors but do not share either crow or col indices."
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
masked_tensor(t1, mask1)
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
masked_tensor(t2, mask2)
|
|
|
|
def test_contiguous(self, device):
|
|
data = torch.randn((3, 3), device=device)
|
|
|
|
contiguous_data = data.clone()
|
|
mask1 = (contiguous_data > 0).bool()
|
|
not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2))
|
|
mask2 = (not_contiguous_data > 0).bool()
|
|
|
|
contiguous_mt = masked_tensor(contiguous_data, mask1)
|
|
not_contiguous_mt = masked_tensor(not_contiguous_data, mask2)
|
|
|
|
contiguous_mt_sparse = masked_tensor(
|
|
contiguous_data.to_sparse_coo(), mask1.to_sparse_coo()
|
|
)
|
|
not_contiguous_mt_sparse = masked_tensor(
|
|
not_contiguous_data.to_sparse_coo(), mask2.to_sparse_coo()
|
|
)
|
|
|
|
self.assertEqual(contiguous_data.is_contiguous(), True)
|
|
self.assertEqual(not_contiguous_data.is_contiguous(), False)
|
|
|
|
self.assertEqual(contiguous_mt.is_contiguous(), True)
|
|
self.assertEqual(not_contiguous_mt.is_contiguous(), False)
|
|
|
|
error_msg = "MaskedTensors with sparse data do not have is_contiguous"
|
|
for t in [contiguous_mt_sparse, not_contiguous_mt_sparse]:
|
|
with self.assertRaisesRegex(ValueError, error_msg):
|
|
t.is_contiguous()
|
|
with self.assertRaisesRegex(ValueError, error_msg):
|
|
t.contiguous()
|
|
|
|
now_contiguous_mt = not_contiguous_mt.contiguous()
|
|
|
|
_compare_mts(not_contiguous_mt, now_contiguous_mt)
|
|
|
|
self.assertEqual(now_contiguous_mt.is_contiguous(), True)
|
|
self.assertEqual(now_contiguous_mt.get_data().is_contiguous(), True)
|
|
self.assertEqual(now_contiguous_mt.is_contiguous(), True)
|
|
|
|
class TestUnary(TestCase):
|
|
def _get_test_data(self, fn_name):
|
|
data = torch.randn(10, 10)
|
|
mask = torch.rand(10, 10) > 0.5
|
|
fn_name = _fix_fn_name(fn_name)
|
|
if fn_name in ["log", "log10", "log1p", "log2", "sqrt"]:
|
|
data = data.mul(0.5).abs()
|
|
if fn_name in ["rsqrt"]:
|
|
data = data.abs() + 1 # Void division by zero
|
|
if fn_name in ["acos", "arccos", "asin", "arcsin", "logit"]:
|
|
data = data.abs().mul(0.5).clamp(0, 1)
|
|
if fn_name in ["atanh", "arctanh", "erfinv"]:
|
|
data = data.mul(0.5).clamp(-1, 1)
|
|
if fn_name in ["acosh", "arccosh"]:
|
|
data = data.abs() + 1
|
|
if fn_name in ["bitwise_not"]:
|
|
data = data.mul(128).to(torch.int8)
|
|
return data, mask
|
|
|
|
def _get_sample_kwargs(self, fn_name):
|
|
fn_name = _fix_fn_name(fn_name)
|
|
kwargs = {}
|
|
if fn_name in ["clamp", "clip"]:
|
|
kwargs["min"] = -0.5
|
|
kwargs["max"] = 0.5
|
|
return kwargs
|
|
|
|
def _get_sample_args(self, fn_name, data, mask):
|
|
fn_name = _fix_fn_name(fn_name)
|
|
mt = masked_tensor(data, mask)
|
|
t_args = [data]
|
|
mt_args = [mt]
|
|
if fn_name in ["pow"]:
|
|
t_args += [2.0]
|
|
mt_args += [2.0]
|
|
return t_args, mt_args
|
|
|
|
@parametrize("fn", NATIVE_UNARY_FNS)
|
|
def test_unary(self, fn):
|
|
torch.random.manual_seed(0)
|
|
fn_name = fn.__name__
|
|
data, mask = self._get_test_data(fn_name)
|
|
kwargs = self._get_sample_kwargs(fn_name)
|
|
|
|
t_args, mt_args = self._get_sample_args(fn_name, data, mask)
|
|
|
|
mt_result = fn(*mt_args, **kwargs)
|
|
t_result = fn(*t_args, **kwargs)
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
@parametrize("fn", NATIVE_INPLACE_UNARY_FNS)
|
|
def test_inplace_unary(self, fn):
|
|
torch.random.manual_seed(0)
|
|
fn_name = fn.__name__
|
|
data, mask = self._get_test_data(fn_name)
|
|
kwargs = self._get_sample_kwargs(fn_name)
|
|
|
|
t_args, mt_args = self._get_sample_args(fn_name, data, mask)
|
|
|
|
mt_result = fn(*mt_args, **kwargs)
|
|
t_result = fn(*t_args, **kwargs)
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
class TestBinary(TestCase):
|
|
def _get_test_data(self, fn_name):
|
|
fn_name = _fix_fn_name(fn_name)
|
|
data0 = torch.randn(10, 10)
|
|
data1 = torch.randn(10, 10)
|
|
mask = torch.rand(10, 10) > 0.5
|
|
if fn_name in ["bitwise_and", "bitwise_or", "bitwise_xor"]:
|
|
data0 = data0.mul(128).to(torch.int8)
|
|
data1 = data1.mul(128).to(torch.int8)
|
|
if fn_name in ["bitwise_left_shift", "bitwise_right_shift"]:
|
|
data0 = data0.abs().to(torch.int64)
|
|
data1 = data1.abs().to(torch.int64)
|
|
return data0, data1, mask
|
|
|
|
def _get_sample_kwargs(self, fn_name):
|
|
fn_name = _fix_fn_name(fn_name)
|
|
kwargs = {}
|
|
return kwargs
|
|
|
|
def _yield_sample_args(self, fn_name, data0, data1, mask):
|
|
""" Returns two sets of Tensor and MaskedTensor args for a binary function to compute.
|
|
Tensor args are all the same (just the two provided data tensors),
|
|
while the MaskedTensor args tests both (MaskedTensor, MaskedTensor) and (MaskedTensor, Tensor)
|
|
"""
|
|
fn_name = _fix_fn_name(fn_name)
|
|
mt0 = masked_tensor(data0, mask)
|
|
mt1 = masked_tensor(data1, mask)
|
|
|
|
t_args = [data0, data1]
|
|
mt_args = [mt0, mt1]
|
|
yield t_args, mt_args
|
|
|
|
t_args = [data0, data1]
|
|
mt_args = [mt0, data1]
|
|
yield t_args, mt_args
|
|
|
|
@parametrize("fn", NATIVE_BINARY_FNS)
|
|
def test_binary(self, fn):
|
|
torch.random.manual_seed(0)
|
|
fn_name = fn.__name__
|
|
data0, data1, mask = self._get_test_data(fn_name)
|
|
kwargs = self._get_sample_kwargs(fn_name)
|
|
|
|
for (t_args, mt_args) in self._yield_sample_args(fn_name, data0, data1, mask):
|
|
mt_result = fn(*mt_args, **kwargs)
|
|
t_result = fn(*t_args, **kwargs)
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
@parametrize("fn", NATIVE_INPLACE_BINARY_FNS)
|
|
def test_inplace_binary(self, fn):
|
|
torch.random.manual_seed(0)
|
|
fn_name = fn.__name__
|
|
data0, data1, mask = self._get_test_data(fn_name)
|
|
kwargs = self._get_sample_kwargs(fn_name)
|
|
|
|
for (t_args, mt_args) in self._yield_sample_args(fn_name, data0, data1, mask):
|
|
mt_result = fn(*mt_args, **kwargs)
|
|
t_result = fn(*t_args, **kwargs)
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
@parametrize("fn_name", ["add", "add_"])
|
|
def test_masks_match(self, fn_name):
|
|
torch.random.manual_seed(0)
|
|
fn = getattr(torch.ops.aten, fn_name)
|
|
data0, data1, mask = self._get_test_data(fn_name)
|
|
mask0 = mask
|
|
mask1 = torch.rand(mask.size()) > 0.5
|
|
mt0 = masked_tensor(data0, mask0)
|
|
mt1 = masked_tensor(data1, mask1)
|
|
try:
|
|
fn(mt0, mt1)
|
|
raise AssertionError
|
|
except ValueError as e:
|
|
assert (
|
|
"Input masks must match. If you need support for this, please open an issue on Github."
|
|
== str(e)
|
|
)
|
|
|
|
class TestReductions(TestCase):
|
|
def test_max_not_implemented(self):
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m)
|
|
with self.assertRaisesRegex(TypeError, "torch._ops.aten.max.default"):
|
|
mt.max()
|
|
|
|
def test_sum(self):
|
|
d = torch.tensor([[0, 1, 2, 6], [3, 4, 5.0, 7]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(17.0), torch.tensor(True)), mt.sum())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([0.0, 4.0, 1.0, 13]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.sum(dim=0),
|
|
)
|
|
|
|
def test_sum_grad(self):
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.sum().backward()
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor(1.0).expand_as(m), m))
|
|
|
|
def test_mean(self):
|
|
d = torch.tensor([[0, 1, 3, 2], [3, 4, 1.0, 4]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(2.5), torch.tensor(True)), mt.mean())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([0.0, 4.0, 1.0, 3]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.mean(dim=0),
|
|
)
|
|
|
|
"""
|
|
The following block of tests "test_mean_grad_case_1[a through e] are used to test the functionality of
|
|
the two different ways of constructing MaskedTensors:
|
|
masked_tensor(data, mask, requires_grad=True/False) -- NO differentiable constructor and always a leaf
|
|
as_masked_tensor(data, mask) -- differentiable constructor
|
|
|
|
Like torch.tensor(data), masked_tensor(data, mask) will provide a UserWarning if data.requires_grad=True
|
|
as_masked_tensor does not take in requires_grad -- it just takes on the requires_grad from data
|
|
|
|
Therefore, there are 6 cases to test and we use `mean` as a proxy to test the different combinations
|
|
|
|
Assuming mt.mean().backward() is run after each constructor:
|
|
|
|
Case 1a:
|
|
values.requires_grad = True
|
|
mt = masked_tensor(values, mask, requires_grad=True)
|
|
yields
|
|
- Provide a UserWarning because values.requires_grad=True
|
|
- values.grad = None
|
|
- mt.grad is a MaskedTensor with the correct gradient
|
|
|
|
Case 1b:
|
|
values.requires_grad = False
|
|
mt = masked_tensor(values, mask, requires_grad=True)
|
|
yields
|
|
- values.grad = None
|
|
- mt.grad is a MaskedTensor with the correct gradient
|
|
|
|
Case 2a/2b:
|
|
values.requires_grad = True/False
|
|
mt = masked_tensor(values, mask, requires_grad=False)
|
|
|
|
will both yield a RuntimeError of "element 0 of tensors does not require grad and does not have a grad_fn"
|
|
as expected. When values.requires_grad=True, we will also get a UserWarning
|
|
|
|
Case 3a:
|
|
values.requires_grad = True
|
|
mt = as_masked_tensor(values, mask)
|
|
yields
|
|
- values.grad is a MaskedTensor with the correct gradient
|
|
- mt.grad is None and gives a UserWarning that
|
|
"The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad"
|
|
|
|
Case 3b:
|
|
values.requires_grad = False
|
|
mt = as_masked_tensor(values, mask)
|
|
|
|
will yield a RuntimeError of "element 0 of tensors does not require grad and does not have a grad_fn"
|
|
as expected.
|
|
"""
|
|
def test_mean_grad_case_1a(self):
|
|
""" values.requires_grad = True
|
|
mt = masked_tensor(values, mask, requires_grad=True)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
with self.assertWarnsRegex(UserWarning, "It is not recommended to create a MaskedTensor"):
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.mean().backward()
|
|
self.assertIsNone(d.grad)
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
|
|
|
|
def test_mean_grad_case_1b(self):
|
|
""" values.requires_grad = False
|
|
mt = masked_tensor(values, mask, requires_grad=True)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.mean().backward()
|
|
self.assertIsNone(d.grad)
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
|
|
|
|
def test_mean_grad_case_1c(self):
|
|
""" values.requires_grad = True
|
|
mt = masked_tensor(values, mask, requires_grad=False)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
with self.assertWarnsRegex(UserWarning, "It is not recommended to create a MaskedTensor"):
|
|
mt = masked_tensor(d, m, requires_grad=False)
|
|
result = mt.mean()
|
|
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
result.backward()
|
|
|
|
|
|
def test_mean_grad_case_1d(self):
|
|
""" values.requires_grad = False
|
|
mt = masked_tensor(values, mask, requires_grad=False)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=False)
|
|
result = mt.mean()
|
|
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
result.backward()
|
|
|
|
def test_mean_grad_case_1e(self):
|
|
""" values.requires_grad = True
|
|
mt = as_masked_tensor(values, mask)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = as_masked_tensor(d, m)
|
|
mt.mean().backward()
|
|
_compare_mts(d.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
|
|
msg = "The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad"
|
|
with self.assertWarnsRegex(UserWarning, msg):
|
|
self.assertIsNone(mt.grad)
|
|
|
|
def test_mean_grad_case_1f(self):
|
|
""" values.requires_grad = False
|
|
mt = as_masked_tensor(values, mask)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = as_masked_tensor(d, m)
|
|
result = mt.mean()
|
|
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
result.backward()
|
|
|
|
def test_mean_dim_grad(self):
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, True, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.mean(1).sum().backward()
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0.5, 0], [0, 1, 0]]), m))
|
|
|
|
def test_amax(self):
|
|
d = torch.tensor([[0, 1, 3, -3], [3, -4, 1.0, 3]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(3.0), torch.tensor(True)), mt.amax())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([0.0, -4.0, 1.0, 3]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.amax(dim=0),
|
|
)
|
|
|
|
def test_amax_grad(self):
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.amax().backward()
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.0, 0, 0], [0, 1, 0]]), m))
|
|
|
|
def test_amin(self):
|
|
d = torch.tensor([[0, 1, 3, -3], [3, -4, 1.0, 3]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(-4.0), torch.tensor(True)), mt.amin())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([0.0, -4.0, 1.0, -3]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.amin(dim=0),
|
|
)
|
|
|
|
def test_amin_grad(self):
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.amin().backward()
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[1.0, 0, 0], [0, 0, 0]]), m))
|
|
|
|
def test_prod(self):
|
|
d = torch.tensor([[0, 1, 3, 0.0], [float("nan"), 4, 1.0, 5.0]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(0.0), torch.tensor(True)), mt.prod())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([0.0, 4.0, 1.0, 0.0]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.prod(dim=0),
|
|
)
|
|
|
|
def test_prod_grad(self):
|
|
d = torch.tensor([[2, float("nan"), 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.prod().backward()
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[4.0, 0, 0], [0, 2, 0]]), m))
|
|
|
|
def test_all(self):
|
|
d = torch.tensor([[True, True, False, False], [False, True, True, True]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(False), torch.tensor(True)), mt.all())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([True, True, True, False]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.all(dim=0),
|
|
)
|
|
|
|
m = torch.tensor([[True, False, True, False], [False, True, False, False]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([True, True, False, True]),
|
|
torch.tensor([True, True, True, False]),
|
|
),
|
|
mt.all(dim=0),
|
|
)
|
|
|
|
def test_grad_dtype(self):
|
|
d = torch.tensor([[True, True, False], [False, True, True]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
msg = "Only Tensors of floating point and complex dtype can require gradients"
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
masked_tensor(d, m, requires_grad=True)
|
|
|
|
def test_any_true_dtype(self):
|
|
mt = torch.masked.MaskedTensor(
|
|
torch.rand(2, 2),
|
|
torch.rand(2, 2) > 0.5
|
|
)
|
|
msg = "expected a boolean tensor"
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
mt._is_any_true()
|
|
|
|
def test__is_any_true(self):
|
|
mt = torch.masked.MaskedTensor(
|
|
torch.tensor([[True, True, False], [False, False, True]]),
|
|
torch.tensor([[True, False, False], [False, True, False]]),
|
|
)
|
|
_compare_mts(
|
|
masked_tensor(torch.tensor(True), torch.tensor(True)),
|
|
mt._is_any_true(),
|
|
)
|
|
|
|
def test__is_any_true_false(self):
|
|
mt = torch.masked.MaskedTensor(
|
|
torch.tensor([[True, True, False], [False, False, True]]),
|
|
torch.tensor([[False, False, False], [False, False, False]]),
|
|
)
|
|
_compare_mts(
|
|
masked_tensor(torch.tensor(False), torch.tensor(True),),
|
|
mt._is_any_true(),
|
|
)
|
|
|
|
def test_backward(self):
|
|
# See https://github.com/pytorch/pytorch/issues/128557
|
|
with torch.autograd.detect_anomaly():
|
|
mt = torch.masked.MaskedTensor(
|
|
torch.rand(2, 2),
|
|
torch.rand(2, 2) > 0.5,
|
|
requires_grad=True
|
|
)
|
|
mt.sum().backward()
|
|
|
|
|
|
def is_unary(op):
|
|
return op.name in UNARY_NAMES
|
|
|
|
def is_binary(op):
|
|
return op.name in BINARY_NAMES
|
|
|
|
def is_reduction(op):
|
|
return op.name in REDUCE_NAMES and op.name not in {"all", "mean", "std", "var"}
|
|
|
|
mt_unary_ufuncs = [op for op in unary_ufuncs if is_unary(op)]
|
|
mt_binary_ufuncs = [op for op in binary_ufuncs if is_binary(op)]
|
|
mt_reduction_ufuncs = [op for op in reduction_ops if is_reduction(op)]
|
|
|
|
MASKEDTENSOR_FLOAT_TYPES = {
|
|
torch.float16,
|
|
torch.float32,
|
|
torch.float64,
|
|
}
|
|
|
|
class TestOperators(TestCase):
|
|
def _convert_mt_args(self, args, mask, layout):
|
|
return [
|
|
masked_tensor(
|
|
arg.sparse_mask(mask) if layout != torch.strided else arg, mask
|
|
)
|
|
if torch.is_tensor(arg)
|
|
else arg
|
|
for arg in args
|
|
]
|
|
|
|
def _test_unary_binary_equality(self, device, dtype, op, layout=torch.strided):
|
|
samples = op.sample_inputs(device, dtype, requires_grad=True)
|
|
|
|
for sample in samples:
|
|
input = sample.input
|
|
sample_args, sample_kwargs = sample.args, sample.kwargs
|
|
mask = (
|
|
_create_random_mask(input.shape, device)
|
|
if "mask" not in sample_kwargs
|
|
else sample_kwargs.pop("mask")
|
|
)
|
|
|
|
if layout == torch.sparse_coo:
|
|
mask = mask.to_sparse_coo().coalesce()
|
|
input = input.sparse_mask(mask)
|
|
elif layout == torch.sparse_csr:
|
|
if input.ndim != 2 or mask.ndim != 2:
|
|
continue
|
|
mask = mask.to_sparse_csr()
|
|
input = input.sparse_mask(mask)
|
|
|
|
# Binary operations currently only support same size masks
|
|
if is_binary(op):
|
|
if input.shape != sample_args[0].shape:
|
|
continue
|
|
# Binary operations also don't support kwargs right now
|
|
else:
|
|
sample_kwargs = {}
|
|
|
|
mt = masked_tensor(input, mask)
|
|
mt_args = self._convert_mt_args(sample_args, mask, layout)
|
|
|
|
mt_result = op(mt, *mt_args, **sample_kwargs)
|
|
t_result = op(sample.input, *sample_args, **sample_kwargs)
|
|
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
# If the operation is binary, check that lhs = masked, rhs = regular tensor also works
|
|
if is_binary(op) and layout == torch.strided:
|
|
mt_result2 = op(mt, *sample_args, **sample_kwargs)
|
|
_compare_mt_t(mt_result2, t_result)
|
|
|
|
def _test_reduction_equality(self, device, dtype, op, layout=torch.strided):
|
|
samples = op.sample_inputs(device, dtype, requires_grad=True)
|
|
|
|
for sample in samples:
|
|
input = sample.input
|
|
# Reduction operations don't support more advanced args/kwargs right now
|
|
sample_args, sample_kwargs = (), {}
|
|
|
|
if input.dim() == 0 or input.numel() == 0:
|
|
continue
|
|
|
|
mask = _create_random_mask(input.shape, device)
|
|
|
|
if torch.count_nonzero(mask) == 0:
|
|
continue
|
|
|
|
tensor_input = _combine_input_and_mask(op.op, input, mask)
|
|
if layout == torch.sparse_coo:
|
|
mask = mask.to_sparse_coo().coalesce()
|
|
input = input.sparse_mask(mask)
|
|
elif layout == torch.sparse_csr:
|
|
if input.ndim != 2 or mask.ndim != 2:
|
|
continue
|
|
mask = mask.to_sparse_csr()
|
|
input = input.sparse_mask(mask)
|
|
|
|
mt = masked_tensor(input, mask)
|
|
mt_args = self._convert_mt_args(sample_args, mask, layout)
|
|
|
|
mt_result = op(mt, *mt_args, **sample_kwargs)
|
|
t_result = op(tensor_input, *sample_args, **sample_kwargs)
|
|
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
@ops(mt_unary_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
|
|
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
|
|
def test_unary_core(self, device, dtype, op, layout):
|
|
# Skip tests that don't have len(kwargs) == 0
|
|
skip_variants = {
|
|
"decimals_0",
|
|
"decimals_3",
|
|
"decimals_neg_3",
|
|
}
|
|
if op.name == "round" and op.variant_test_name in skip_variants:
|
|
return
|
|
self._test_unary_binary_equality(device, dtype, op)
|
|
|
|
@ops(mt_binary_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
|
|
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
|
|
# FIXME:
|
|
# Result is just wrong; production logic should be fixed
|
|
@decorateIf(
|
|
unittest.expectedFailure,
|
|
lambda params: (
|
|
params["op"].name == "add" and
|
|
params["dtype"] in [torch.float16, torch.float32] and
|
|
params["device"] == "cpu" and
|
|
params["layout"] == torch.sparse_csr
|
|
)
|
|
)
|
|
# Result is just wrong; production logic should be fixed
|
|
@decorateIf(
|
|
unittest.expectedFailure,
|
|
lambda params: (
|
|
params["op"].name == "sub" and
|
|
params["dtype"] in [torch.float16, torch.float32] and
|
|
params["device"] == "cpu" and
|
|
params["layout"] == torch.sparse_csr
|
|
)
|
|
)
|
|
# Result is just wrong; production logic should be fixed
|
|
@decorateIf(
|
|
unittest.expectedFailure,
|
|
lambda params: (
|
|
params["op"].name == "eq" and
|
|
params["dtype"] == torch.float64 and
|
|
params["device"] == "cpu" and
|
|
params["layout"] == torch.sparse_csr
|
|
)
|
|
)
|
|
def test_binary_core(self, device, dtype, op, layout):
|
|
self._test_unary_binary_equality(device, dtype, op, layout)
|
|
|
|
@ops(mt_reduction_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
|
|
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
|
|
def test_reduction_all(self, device, dtype, op, layout):
|
|
# argmin and argmax are not currently supported for torch.sparse_csr
|
|
if op.name in {"argmin", "argmax"} and layout == torch.sparse_csr:
|
|
return
|
|
|
|
self._test_reduction_equality(device, dtype, op, layout)
|
|
|
|
|
|
only_for = ("cpu", "cuda")
|
|
instantiate_device_type_tests(TestOperators, globals(), only_for=only_for)
|
|
|
|
instantiate_device_type_tests(TestBasics, globals(), only_for=only_for)
|
|
instantiate_parametrized_tests(TestUnary)
|
|
instantiate_parametrized_tests(TestBinary)
|
|
instantiate_parametrized_tests(TestReductions)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|