pytorch/test/export/test_draft_export.py
Angela Yi de509abe1c [export] Dedup data-dependent errors based on stacktrace (#139540)
Summary:
Dedup the data-dependent errors based on the stacktrace it points to. Right now we just display every propagate-real-tensor log that shows up, but we actually can dedup them if they are due to the same piece of code (ex. there could multiple calls to a piece of code that does some data dependent computation).

This occurred when trying out draft export on the PT2I model zoo. For a specific model, previously we would get ~3k data dependent errors, but after deduping based on the stacktrace we now only get 4 errors.

Test Plan: CI

Differential Revision: D65374254

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139540
Approved by: https://github.com/pianpwk, https://github.com/zou3519
2024-11-05 18:16:05 +00:00

277 lines
8.6 KiB
Python

# Owner(s): ["oncall: export"]
import copy
import torch
from torch.export import Dim
from torch.export._draft_export import draft_export, FailureType
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.torchbind_impls import (
_empty_tensor_queue,
init_torchbind_implementations,
)
class TestDraftExport(TestCase):
def setUp(self):
init_torchbind_implementations()
@torch._library.register_fake_class("_TorchScriptTesting::_TensorQueue")
class FakeTensorQueue:
def __init__(self, queue):
self.queue = queue
@classmethod
def __obj_unflatten__(cls, flattened_ctx):
return cls(**dict(flattened_ctx))
def push(self, x):
self.queue.append(x)
def pop(self):
return self.queue.pop(0)
def size(self):
return len(self.queue)
def is_empty(self):
return len(self.queue) == 0
def float_size(self):
return float(len(self.queue))
self.torch_bind_ops = [
torch.ops._TorchScriptTesting.queue_pop,
torch.ops._TorchScriptTesting.queue_push,
torch.ops._TorchScriptTesting.queue_size,
]
def tearDown(self):
torch._library.fake_class_registry.deregister_fake_class(
"_TorchScriptTesting::_TensorQueue"
)
def test_missing_meta_kernel_custom_op(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
@torch.library.custom_op("mylib::foo2", mutates_args={})
def foo2_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res = torch.ops.mylib.foo2(a, b)
return res
inp = (torch.ones(3, 3), torch.ones(3, 3))
ep, report = draft_export(M(), inp)
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
)
inp = (torch.randn(3, 3), torch.randn(3, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_missing_meta_kernel_impl(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo",
"(Tensor a, Tensor b) -> Tensor",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo", "cpu", lib=lib)
def foo_impl(a, b):
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res = torch.ops.mylib.foo(a, b)
return res
inp = (torch.ones(3, 3), torch.ones(3, 3))
ep, report = draft_export(M(), inp)
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
)
inp = (torch.randn(3, 3), torch.randn(3, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_data_dependent_failure(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo1",
"(Tensor a, Tensor b) -> Tensor",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo1", "cpu", lib=lib)
def foo_impl(a, b):
return a + b
@torch.library.register_fake("mylib::foo1", lib=lib)
def mylib_foo_default_fake(*args, **kwargs):
ctx = torch.library.get_ctx()
fake_shape = [ctx.new_dynamic_size() for _ in range(2)]
return torch.empty(fake_shape, dtype=torch.float32, device="cpu")
class M(torch.nn.Module):
def forward(self, a, b, c):
res = torch.ops.mylib.foo1(a, b)
c_item = c.item()
return res[:c_item]
inp = (torch.ones(3, 3), torch.ones(3, 3), torch.tensor(3))
ep, report = draft_export(M(), inp)
self.assertTrue(len(report.failures) > 0)
self.assertEqual(
report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR
)
inp = (torch.randn(3, 3), torch.randn(3, 3), torch.tensor(2))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_dedup_data_dependent_failure(self):
class M(torch.nn.Module):
def forward(self, x, y, z):
res = 0
for v in [x, y]:
if v.item() > 10:
res += v * v
else:
res += v + v
return z * res
inp = (torch.tensor(5), torch.tensor(3), torch.tensor(2))
ep, report = draft_export(M(), inp)
self.assertTrue(len(report.failures) > 0)
self.assertEqual(
report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR
)
inp = (torch.tensor(4), torch.tensor(2), torch.tensor(6))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_offsets(self):
class M(torch.nn.Module):
def forward(self, x):
a = x.item()
if a == 0:
raise RuntimeError("bad")
return x * a
inp = (torch.tensor(3),)
ep, report = draft_export(M(), inp)
def test_shape_failure(self):
class M(torch.nn.Module):
def forward(self, a):
assert a.shape[0] == 3
return a * a
inp = (torch.ones(3, 3),)
ep, report = draft_export(M(), inp, dynamic_shapes={"a": {0: Dim("a0")}})
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.CONSTRAINT_VIOLATION_ERROR
)
inp = (torch.randn(3, 3),)
self.assertEqual(ep.module()(*inp), M()(*inp))
inp = (torch.randn(4, 3),)
with self.assertRaises(RuntimeError):
ep.module()(*inp)
def test_side_effect1(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("a", torch.tensor(2))
def forward(self, b):
a_item = self.a.item()
if a_item == 2:
res = a_item * b
else:
res = (a_item + 1) * b
self.a.add_(1)
a_item = self.a.item()
if a_item == 3:
res = a_item * res
else:
res = (a_item + 1) * res
return res
inp = (torch.ones(3, 3),)
mod = M()
ep, report = draft_export(mod, inp)
self.assertEqual(mod.a, torch.tensor(2))
FileCheck().check_count("torch.ops.aten.add.default", 0, exactly=True).run(
ep.graph_module.code
)
def test_side_effect_inps(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x.sin_()
return x
inp = (torch.ones(3, 3),)
ep, report = draft_export(M(), inp)
self.assertTrue(report.successful())
self.assertEqual(inp[0], torch.ones(3, 3))
def test_torchbind(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
def forward(self, tq, x):
x_cos = tq.pop() + tq.float_size() + self.linear(x)
if tq.is_empty():
x_sin = self.linear(tq.pop()) - tq.size() + x
else:
x_sin = tq.pop() + tq.size() + x
return x_sin, x_cos, tq
mod = Model()
tq = _empty_tensor_queue()
tq2 = copy.deepcopy(tq)
a = torch.randn(2, 2)
b = torch.randn(2, 2)
tq.push(a)
tq.push(b)
tq3 = copy.deepcopy(tq)
inp = (tq, torch.randn(2, 2))
ep, report = draft_export(mod, inp)
self.assertTrue(report.successful())
self.assertEqual(tq2.size(), 0)
self.assertEqual(tq3.size(), 2)
self.assertEqual(tq.size(), 2)
if __name__ == "__main__":
run_tests()