pytorch/torch/distributed/checkpoint/storage.py
2023-12-13 10:32:36 +00:00

223 lines
6.8 KiB
Python

import abc
from dataclasses import dataclass
from typing import Any, List
from torch.futures import Future
from .metadata import Metadata, MetadataIndex
from .planner import LoadPlan, LoadPlanner, SavePlan, SavePlanner
__all__ = ["WriteResult", "StorageWriter", "StorageReader"]
@dataclass(frozen=True)
class WriteResult:
index: MetadataIndex
size_in_bytes: int
storage_data: Any
class StorageWriter(abc.ABC):
"""
Interface used by ``save_state_dict`` to write to storage.
One StorageWriter instance acts as both the coordinator and the follower
in a distributed checkpoint. As part of initialization, each instance
is told its role.
A subclass should expect the following sequence of calls.
1) (all ranks) set_up_storage_writer()
2) (all ranks) prepare_local_plan()
3) (coordinator) prepare_global_plan()
4) (all ranks) write_data()
5) (coordinator) finish()
"""
@abc.abstractmethod
def set_up_storage_writer(self, is_coordinator: bool) -> None:
"""
Initialize this instance.
Args:
is_coordinator (bool): Whether this instance is responsible for coordinating
the checkpoint.
"""
pass
@abc.abstractmethod
def prepare_local_plan(self, plan: SavePlan) -> SavePlan:
"""
Perform storage-specific local planning.
While this method can produce a completely different plan, the recommended
way is to store storage specific data in SavePlan::storage_data.
Args:
plan (SavePlan): The local plan from the ``SavePlanner`` in use.
Returns:
A transformed ``SavePlan`` after storage local planning
"""
pass
@abc.abstractmethod
def prepare_global_plan(self, plans: List[SavePlan]) -> List[SavePlan]:
"""
Perform centralized planning of storage.
This method is only called on the coordinator instance.
While this method can produce a completely different plan, the preferred
way is to store storage specific data in SavePlan::storage_data.
Args:
plans: A list of ``SavePlan`` instances, one for each rank.
Returns:
A list of transformed ``SavePlan`` after storage global planning
"""
pass
@abc.abstractmethod
def write_data(
self, plan: SavePlan, planner: SavePlanner
) -> Future[List[WriteResult]]:
"""
Write all items from ``plan`` using ``planner`` to resolve the data.
A subclass should call ``SavePlanner::resolve_data`` on each item
from the plan to get access to the underlying object to write.
Subclasses should lazily call `resolve_data` as it can allocate memory.
In case of tensors, make following assumptions:
- They might be on any device, including not matching the one on ``WriteItem::tensor_data``
- They might be views or not contiguous. Only the projection needs to be saved.
Args:
plan (SavePlan): The save plan to execute.
planner (SavePlanner): Planner object to be used to resolve items to data.
Returns:
A future that completes to a list of WriteResult
"""
pass
@abc.abstractmethod
def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None:
"""
Write the metadata and marks the current checkpoint as successful.
The actual format/schema used for serializing `metadata` is an
implementation detail. The only requirement is that it's recoverable
in to the same object graph.
Args:
metadata (Metadata): metadata for the new checkpoint
results: A list of WriteResults from all ranks.
Returns:
None
"""
pass
class StorageReader(abc.ABC):
"""
Interface used by ``load_state_dict`` to read from storage.
One StorageReader instance acts as both the coordinator and the follower
in a distributed checkpoint. As part of initialization, each instance
is told its role.
A subclass should expected the following sequence of calls by ``load_state_dict``:
1) (all ranks) read_metadata()
2) (all ranks) set_up_storage_reader()
3) (all ranks) prepare_local_plan()
4) (coordinator) prepare_global_plan()
5) (all ranks) read_data()
"""
@abc.abstractmethod
def read_metadata(self) -> Metadata:
"""
Read the checkpoint metadata.
Returns:
The metadata object associated with the checkpoint being loaded.
"""
pass
@abc.abstractmethod
def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
"""
Initialize this instance.
Args:
metadata (Metadata): The metadata schema to use.
is_coordinator (bool): Whether this instance is responsible for coordinating
the checkpoint.
"""
pass
@abc.abstractmethod
def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan:
"""
Perform storage-specific local planning.
While this method can produce a completely different plan, the recommended
way is to store storage specific data in LoadPlan::storage_data.
Args:
plan (LoadPlan): The local plan from the ``LoadPlan`` in use.
Returns:
A transformed ``LoadPlan`` after storage local planning
"""
pass
@abc.abstractmethod
def prepare_global_plan(self, plans: List[LoadPlan]) -> List[LoadPlan]:
"""
Perform centralized planning of storage loading.
This method is only called on the coordinator instance.
While this method can produce a completely different plan, the preferred
way is to store storage specific data in LoadPlan::storage_data.
Args:
plans: A list of ``LoadPlan`` instances, one for each rank.
Returns:
A list of transformed ``LoadPlan`` after storage global planning
"""
pass
@abc.abstractmethod
def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]:
"""
Read all items from ``plan`` using ``planner`` to resolve the data.
A subclass should call ``LoadPlanner::load_bytes`` to deserialize a BytesIO
object into the right place.
A subclass should call ``LoadPlanner::resolve_tensor`` to get access to the
tensors that in should load data into.
It's the StorageLayer responsibility to properly schedule any cross device copies
required.
Args:
plan (LoadPlan): The local plan to execute on
planner (LoadPlanner): The planner object to use to resolve items.
Returns:
A future that completes once all reads are finished.
"""
pass