mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
No logic change. Just typing and ufmt. Differential Revision: [D51914982](https://our.internmc.facebook.com/intern/diff/D51914982/) Pull Request resolved: https://github.com/pytorch/pytorch/pull/115302 Approved by: https://github.com/XilunWu, https://github.com/wz337, https://github.com/LucasLLC ghstack dependencies: #115523
256 lines
8.4 KiB
Python
256 lines
8.4 KiB
Python
from typing import Any, List
|
|
|
|
import torch
|
|
from torch.distributed._shard.metadata import ShardMetadata
|
|
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
|
from torch.distributed._shard.sharded_tensor.metadata import TensorProperties
|
|
from torch.distributed._tensor import DTensor
|
|
from torch.distributed._tensor._utils import compute_local_shape_and_global_offset
|
|
|
|
from .metadata import (
|
|
BytesStorageMetadata,
|
|
ChunkStorageMetadata,
|
|
MetadataIndex,
|
|
STATE_DICT_TYPE,
|
|
STORAGE_TYPES,
|
|
TensorStorageMetadata,
|
|
)
|
|
from .planner import (
|
|
LoadItemType,
|
|
ReadItem,
|
|
SavePlan,
|
|
TensorWriteData,
|
|
WriteItem,
|
|
WriteItemType,
|
|
)
|
|
from .resharding import (
|
|
_check_shard_metadata_pair_overlap,
|
|
_shards_get_overlap_region_wrt_saved_tensor,
|
|
)
|
|
|
|
__all__: List[str] = ["create_read_items_for_chunk_list"]
|
|
|
|
|
|
def _create_chunk_from_tensor(tensor: torch.Tensor) -> ChunkStorageMetadata:
|
|
return ChunkStorageMetadata(
|
|
offsets=torch.Size([0] * len(tensor.size())), sizes=tensor.size()
|
|
)
|
|
|
|
|
|
def _chunk_for_shard(shard_md: ShardMetadata) -> ChunkStorageMetadata:
|
|
return ChunkStorageMetadata(
|
|
offsets=torch.Size(shard_md.shard_offsets),
|
|
sizes=torch.Size(shard_md.shard_sizes),
|
|
)
|
|
|
|
|
|
def _sharded_tensor_metadata(
|
|
sharded_tensor: ShardedTensor, shard_md: ShardMetadata
|
|
) -> TensorWriteData:
|
|
return TensorWriteData(
|
|
chunk=_chunk_for_shard(shard_md),
|
|
properties=sharded_tensor.metadata().tensor_properties,
|
|
size=sharded_tensor.metadata().size,
|
|
)
|
|
|
|
|
|
def _create_write_items_for_dtensor(fqn: str, tensor: DTensor) -> WriteItem:
|
|
sizes, offsets = compute_local_shape_and_global_offset(
|
|
tensor.shape, tensor.device_mesh, tensor.placements
|
|
)
|
|
sizes, offsets = torch.Size(sizes), torch.Size(offsets)
|
|
|
|
return WriteItem(
|
|
index=MetadataIndex(fqn, offsets),
|
|
type=WriteItemType.SHARD,
|
|
tensor_data=TensorWriteData(
|
|
chunk=ChunkStorageMetadata(
|
|
offsets=offsets,
|
|
sizes=sizes,
|
|
),
|
|
# TODO:update this to not use TensorProperties from ST.
|
|
properties=TensorProperties.create_from_tensor(tensor.to_local()),
|
|
size=tensor.size(),
|
|
),
|
|
)
|
|
|
|
|
|
def _create_write_item_for_shard(
|
|
fqn: str, sharded_tensor: ShardedTensor, shard_md: ShardMetadata
|
|
) -> WriteItem:
|
|
offsets = torch.Size(shard_md.shard_offsets)
|
|
return WriteItem(
|
|
index=MetadataIndex(fqn, offsets),
|
|
type=WriteItemType.SHARD,
|
|
tensor_data=_sharded_tensor_metadata(sharded_tensor, shard_md),
|
|
)
|
|
|
|
|
|
def _create_write_item_for_tensor(fqn: str, tensor: torch.Tensor) -> WriteItem:
|
|
offsets = torch.Size([0] * len(tensor.size()))
|
|
return WriteItem(
|
|
index=MetadataIndex(fqn, offsets),
|
|
type=WriteItemType.TENSOR,
|
|
tensor_data=TensorWriteData(
|
|
chunk=ChunkStorageMetadata(offsets=offsets, sizes=tensor.size()),
|
|
properties=TensorProperties.create_from_tensor(tensor),
|
|
size=tensor.size(),
|
|
),
|
|
)
|
|
|
|
|
|
def _create_write_item_for_bytesio(fqn: str, bytes: Any):
|
|
return WriteItem(
|
|
index=MetadataIndex(fqn),
|
|
type=WriteItemType.BYTE_IO,
|
|
)
|
|
|
|
|
|
def _create_read_item_for_byteio(
|
|
dest_index, dest_offset, storage_index, storage_offset, length
|
|
):
|
|
return ReadItem(
|
|
type=LoadItemType.BYTE_IO,
|
|
dest_index=dest_index,
|
|
dest_offsets=torch.Size((dest_offset,)),
|
|
storage_index=storage_index,
|
|
storage_offsets=torch.Size((storage_offset,)),
|
|
lengths=torch.Size((length,)),
|
|
)
|
|
|
|
|
|
def _create_read_item_for_tensor(
|
|
dest_index, dest_offsets, storage_index, storage_offsets, lengths
|
|
):
|
|
return ReadItem(
|
|
type=LoadItemType.TENSOR,
|
|
dest_index=dest_index,
|
|
dest_offsets=torch.Size(dest_offsets),
|
|
storage_index=storage_index,
|
|
storage_offsets=torch.Size(storage_offsets),
|
|
lengths=torch.Size(lengths),
|
|
)
|
|
|
|
|
|
def create_read_items_for_chunk_list(
|
|
fqn: str,
|
|
checkpoint_md: TensorStorageMetadata,
|
|
local_chunks: List[ChunkStorageMetadata],
|
|
) -> List[ReadItem]:
|
|
"""
|
|
Create a list of ``ReadItem`` based on the checkpoint and local chunks.
|
|
|
|
This applies the resharding algorithm and computes the reads needed
|
|
to satisfy ``local_chunks`` with a checkpoint described by ``checkpoint_md``.
|
|
|
|
Args:
|
|
fqn (str) : The state_dict FQN to pass to ``ReadItem``.
|
|
checkpoint_md (TensorStorageMetadata): metadata for a given tensor
|
|
from a checkpoint.
|
|
local_chunks (List[ChunkStorageMetadata]): Local chunks that needs to be
|
|
loaded.
|
|
|
|
Returns:
|
|
A list of ``ReadItem`` that will satisfy all input chunks.
|
|
"""
|
|
read_items = []
|
|
# this is a naive quadratic algo that can be optimized later
|
|
for idx, shard in enumerate(local_chunks):
|
|
for storage_idx, storage_md in enumerate(checkpoint_md.chunks):
|
|
if not _check_shard_metadata_pair_overlap(shard, storage_md):
|
|
continue
|
|
|
|
storage_offsets = []
|
|
dest_offsets = []
|
|
lengths = []
|
|
for (
|
|
dim,
|
|
offset_for_saved_tensor,
|
|
offset_for_current_tensor,
|
|
length,
|
|
) in _shards_get_overlap_region_wrt_saved_tensor(
|
|
saved_shard=storage_md, current_shard=shard
|
|
):
|
|
storage_offsets.append(offset_for_saved_tensor)
|
|
dest_offsets.append(offset_for_current_tensor)
|
|
lengths.append(length)
|
|
|
|
read_items.append(
|
|
_create_read_item_for_tensor(
|
|
dest_index=MetadataIndex(fqn, shard.offsets, idx),
|
|
dest_offsets=dest_offsets,
|
|
storage_index=MetadataIndex(fqn, storage_md.offsets, storage_idx),
|
|
storage_offsets=storage_offsets,
|
|
lengths=lengths,
|
|
)
|
|
)
|
|
return read_items
|
|
|
|
|
|
def _create_default_metadata_only_plan(state_dict: STATE_DICT_TYPE) -> SavePlan:
|
|
requests = []
|
|
for fqn, obj in state_dict.items():
|
|
if isinstance(obj, DTensor):
|
|
requests.append(_create_write_items_for_dtensor(fqn, obj))
|
|
elif isinstance(obj, ShardedTensor):
|
|
for shard_md in obj.metadata().shards_metadata:
|
|
requests.append(_create_write_item_for_shard(fqn, obj, shard_md))
|
|
elif isinstance(obj, torch.Tensor):
|
|
requests.append(_create_write_item_for_tensor(fqn, obj))
|
|
else:
|
|
requests.append(_create_write_item_for_bytesio(fqn, obj))
|
|
return SavePlan(requests)
|
|
|
|
|
|
def _create_write_items(fqn: str, object: Any) -> List[WriteItem]:
|
|
if isinstance(object, DTensor):
|
|
return [_create_write_items_for_dtensor(fqn, object)]
|
|
elif isinstance(object, ShardedTensor):
|
|
return [
|
|
_create_write_item_for_shard(fqn, object, shard.metadata)
|
|
for shard in object.local_shards()
|
|
]
|
|
elif isinstance(object, torch.Tensor):
|
|
return [_create_write_item_for_tensor(fqn, object)]
|
|
else:
|
|
return [_create_write_item_for_bytesio(fqn, object)]
|
|
|
|
|
|
def _create_chunk_from_dtensor(tensor: DTensor) -> ChunkStorageMetadata:
|
|
sizes, offsets = compute_local_shape_and_global_offset(
|
|
tensor.shape, tensor.device_mesh, tensor.placements
|
|
)
|
|
sizes, offsets = torch.Size(sizes), torch.Size(offsets)
|
|
return ChunkStorageMetadata(
|
|
offsets=offsets,
|
|
sizes=sizes,
|
|
)
|
|
|
|
|
|
def _create_read_items(fqn: str, md: STORAGE_TYPES, obj: Any) -> List[ReadItem]:
|
|
if not isinstance(md, BytesStorageMetadata):
|
|
if isinstance(obj, DTensor):
|
|
local_chunks = [_create_chunk_from_dtensor(obj)]
|
|
elif isinstance(obj, ShardedTensor):
|
|
local_chunks = [
|
|
_chunk_for_shard(shard.metadata) for shard in obj.local_shards()
|
|
]
|
|
elif isinstance(obj, torch.Tensor):
|
|
local_chunks = [_create_chunk_from_tensor(obj)]
|
|
else:
|
|
raise ValueError(
|
|
f"Invalid checkpoint metadata for {fqn}, "
|
|
+ f"expected BytesStorageMetadata but found {type(md)}"
|
|
)
|
|
return create_read_items_for_chunk_list(fqn, md, local_chunks)
|
|
else:
|
|
return [
|
|
_create_read_item_for_byteio(
|
|
dest_index=MetadataIndex(fqn),
|
|
dest_offset=0,
|
|
storage_index=MetadataIndex(fqn),
|
|
storage_offset=0,
|
|
length=0,
|
|
)
|
|
]
|