mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary:
This reverts commit 03389dc851.
Attempt again for PR: https://github.com/pytorch/pytorch/issues/63745
Fixes the windows build failure.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65137
Reviewed By: seemethere, dzhulgakov, heitorschueroff
Differential Revision: D30994556
Pulled By: malfet
fbshipit-source-id: f1925b6c5cc1a1a441a96499667c91e8dfc1b53d
188 lines
6.6 KiB
C++
188 lines
6.6 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/jit/codegen/cuda/executor.h>
|
|
#include <torch/csrc/jit/codegen/cuda/fusion.h>
|
|
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
|
|
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
|
|
#include <torch/csrc/jit/codegen/cuda/kernel_cache.h>
|
|
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
|
|
#include <torch/csrc/jit/codegen/cuda/ops/all_ops.h>
|
|
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
|
|
|
|
#include <benchmark/benchmark.h>
|
|
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <torch/torch.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
using namespace torch::jit::fuser::cuda;
|
|
|
|
std::string toString(ReductionParams rparams);
|
|
std::string toString(PointwiseParams params);
|
|
std::string toString(LaunchParams lparams);
|
|
|
|
// Run benchmark iterations with provided inputs. If not segmented, report
|
|
// kernel time from the runtime, as well as heuristic parameters. If segmented
|
|
// use timers. Make sure to clear L2 between iterations.
|
|
void runBenchmarkIterations(
|
|
benchmark::State& benchmark_state,
|
|
FusionExecutorCache* fusion_executor_cache,
|
|
std::vector<c10::IValue>& aten_inputs);
|
|
|
|
void clearL2Cache();
|
|
|
|
// Make a tensor that is known to be fully contiguous of dimensionality=ndims,
|
|
// but unknown sizes. Taken from test_gpu.cpp
|
|
TensorView* makeContigTensor(size_t ndims, DataType dtype = DataType::Float);
|
|
|
|
class CudaKernelTimer {
|
|
public:
|
|
CudaKernelTimer() {
|
|
// Setup
|
|
cudaEventCreate(&start_event);
|
|
cudaEventCreate(&finish_event);
|
|
cudaEventRecord(start_event);
|
|
}
|
|
|
|
~CudaKernelTimer() {
|
|
cudaEventDestroy(start_event);
|
|
cudaEventDestroy(finish_event);
|
|
}
|
|
|
|
void restart() {
|
|
cudaEventRecord(start_event);
|
|
}
|
|
|
|
float elapsed() {
|
|
// Record
|
|
cudaEventRecord(finish_event);
|
|
cudaEventSynchronize(start_event);
|
|
cudaEventSynchronize(finish_event);
|
|
cudaEventElapsedTime(&kernel_time_ms_, start_event, finish_event);
|
|
return kernel_time_ms_;
|
|
}
|
|
|
|
private:
|
|
// Create
|
|
float kernel_time_ms_ = 0;
|
|
cudaEvent_t start_event = {};
|
|
cudaEvent_t finish_event = {};
|
|
};
|
|
|
|
namespace executorCache {
|
|
using ExecutorPtr = std::unique_ptr<FusionExecutorCache>;
|
|
using ExecutorMap = std::unordered_map<std::string, ExecutorPtr>;
|
|
ExecutorMap& getGlobalMap();
|
|
} // namespace executorCache
|
|
|
|
//! Utility to manage FusionExecutorCache instances for
|
|
//! all defined benchmarks
|
|
class BenchmarkGraph : public benchmark::Fixture {
|
|
public:
|
|
using SetupFusionFunction = std::function<void(Fusion*)>;
|
|
using SetupFusionMap = std::unordered_map<std::string, SetupFusionFunction>;
|
|
|
|
virtual std::string graphName() = 0;
|
|
virtual SetupFusionFunction setupFusion() = 0;
|
|
|
|
FusionExecutorCache* getExecutorCache() {
|
|
auto& executor_ = getExecutorCacheMap()[graphName()];
|
|
TORCH_INTERNAL_ASSERT(executor_);
|
|
return executor_.get();
|
|
}
|
|
|
|
void SetUp(const ::benchmark::State& state) {
|
|
auto& executor_ = getExecutorCacheMap()[graphName()];
|
|
// Makes sure same graph hasn't been compiled before
|
|
if (!executor_) {
|
|
auto fusion_ptr = std::make_unique<Fusion>();
|
|
FusionGuard(fusion_ptr.get());
|
|
setupFusion()(fusion_ptr.get());
|
|
getExecutorCacheMap()[graphName()] =
|
|
std::make_unique<FusionExecutorCache>(std::move(fusion_ptr));
|
|
}
|
|
}
|
|
|
|
void TearDown(const ::benchmark::State& state) {}
|
|
|
|
protected:
|
|
static executorCache::ExecutorMap& getExecutorCacheMap() {
|
|
return executorCache::getGlobalMap();
|
|
}
|
|
};
|
|
|
|
#define NVFUSER_TO_STRING_HELPER(n) std::string(#n)
|
|
#define NVFUSER_TO_STRING(n) NVFUSER_TO_STRING_HELPER(n)
|
|
|
|
//! NVFUSER_BENCHMARK_RUN utility usage:
|
|
//! This utility helps create and manage FusionExecutorCaches and tries to use
|
|
//! the caching
|
|
//! mechanism in NVFuser to avoid re-compilation.
|
|
//!
|
|
//! There are two macros in this utility: NVFUSER_BENCHMARK_DEFINE, and
|
|
//! NVFUSER_BENCHMARK_RUN,
|
|
//! and user needs to supply two functions SETUP_FUSION and RUN_FUSION, with
|
|
//! following signatures:
|
|
//!
|
|
//! SETUP_FUSION(Fusion* , args...);
|
|
//! RUN_FUSION(benchmark::State&, FusionExecutorCache* , args...);
|
|
//!
|
|
//! where args... are additional arguments, and they need to be the same for
|
|
//! SETUP_FUSION and RUN_FUSION.
|
|
//!
|
|
//! SETUP_FUSION is called once in each definition of benchmark to build the
|
|
//! fusionIR graph
|
|
//!
|
|
//! RUN_FUSION is just like the normal benchmark instance, except that a
|
|
//! FusionExecutorCache
|
|
//! will be provided for scheduling, running and timing the fusion runs. It is
|
|
//! called once in each benchmark instance. For example:
|
|
//! NVFUSER_BENCHMARK_RUN(my_benchmark)
|
|
//! ->RangeMultiplier(2)
|
|
//! ->Ranges({{1, 4})
|
|
//! Calls RUN_FUSION 3 times.
|
|
//!
|
|
//! To register a benchmark, the API is:
|
|
//!
|
|
//! NVFUSER_BENCHMARK_DEFINE(my_benchmark,SETUP_FUSION,RUN_FUSION,args...);
|
|
//!
|
|
//! where my_benchmark is any unique name given for this benchmark,
|
|
//! SETUP_FUSION, RUN_FUSION as described above,
|
|
//! args... is the arg list supplied to both setup_fusion and run_fusion
|
|
//!
|
|
//! each NVFUSER_BENCHMARK_DEFINE registers a benchmark with a single
|
|
//! FusionExecutorCache, i.e. a single fusion graph, and multiple benchmark
|
|
//! data points can be registered like:
|
|
//!
|
|
//! NVFUSER_BENCHMARK_RUN(my_benchmark)
|
|
//! ->Ranges({{1,2}});
|
|
//!
|
|
//! NVFUSER_BENCHMARK_RUN(my_benchmark)
|
|
//! ->Ranges({{3,4}});
|
|
//!
|
|
//! All datapoints will use the same FusionExecutorCache so recompilation is
|
|
//! avoided as much as possible.
|
|
|
|
#define NVFUSER_BENCHMARK_DEFINE( \
|
|
BENCHMARK_NAME, SETUP_FUSION, RUN_FUSION, ...) \
|
|
class BENCHMARK_NAME##___GRAPH : public BenchmarkGraph { \
|
|
public: \
|
|
std::string graphName() { \
|
|
return NVFUSER_TO_STRING(BENCHMARK_NAME##___GRAPH); \
|
|
} \
|
|
SetupFusionFunction setupFusion() { \
|
|
return [](Fusion* fusion) { SETUP_FUSION(fusion, __VA_ARGS__); }; \
|
|
} \
|
|
}; \
|
|
BENCHMARK_DEFINE_F(BENCHMARK_NAME##___GRAPH, BENCHMARK_NAME) \
|
|
(benchmark::State & benchmark_state) { \
|
|
RUN_FUSION( \
|
|
benchmark_state, \
|
|
BENCHMARK_NAME##___GRAPH::getExecutorCache(), \
|
|
__VA_ARGS__); \
|
|
}
|
|
|
|
#define NVFUSER_BENCHMARK_RUN(BENCHMARK_NAME) \
|
|
BENCHMARK_REGISTER_F(BENCHMARK_NAME##___GRAPH, BENCHMARK_NAME)
|