mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/54701 We need NNAPI models to support inputs (and, by extension, intermediate values and outputs) whose shape is only determined at load time. For example, a vision models input shape might be dependent on the aspect ratio of the device camera. While NNAPI has full support for variable shapes (by setting components of the operand shape to 0), the guidance we have received is that vendor-provided drivers for real hardware are not able to support this efficiently. Therefore, we take a hybrid approach where shapes are calculated at model load time to semi-dynamically construct our NNAPI model. While this doesn't let us have truly dynamic input shapes, it does allow us to ensure that the vendor driver only sees fixed shapes, so we get maximum performance. In this initial commit, only PReLU supports dynamic shapes. Additional operators will be converted in separate diffs. - In order to convert a flexible-shape model, the user supplies inputs with shapes containing dimensions of size 0 for the flexible dimensions. - During conversion, we generate code to compute the shapes of all intermediates and outputs as a function of the input shapes. - We no longer run the input model to produce the output templates. Instead, we generate code to return properly-sized templates, given the input shapes. - All of this generated code goes into a "ShapeComputeModule" that is used by the NnapiModule during initialization. - The ShapeComputeModule mutates the serialized model to fill in the computed sizes for each operand. This requires us to change the dtype for the serialized model to int32, but this should be fine because everything in it is already 4-byte aligned. - NnapiInitWrapper no longer exists. Instead, initialization is performed on the first run, based on the real arguments. We plan to provide an API for doing eager initialization. - Unit test updated to allow separate arguments to be given for trace, conversion, and inference. A flexible-shape test case was added for PReLU. Test Plan: Unit test Reviewed By: axitkhurana Differential Revision: D27536796 Pulled By: dreiss fbshipit-source-id: 105585f247987b1e6ec6946a6fe44401237cb0a0
1675 lines
60 KiB
Python
1675 lines
60 KiB
Python
import enum
|
|
import struct
|
|
import array
|
|
import logging
|
|
from typing import (
|
|
Tuple,
|
|
NamedTuple,
|
|
)
|
|
|
|
import torch
|
|
|
|
|
|
# TODO: Add type annotations
|
|
# TODO: Check tensor types for ops
|
|
|
|
|
|
LOG = logging.getLogger("nnapi_serialize")
|
|
|
|
|
|
class NNAPI_OperandCode(object):
|
|
FLOAT32 = 0
|
|
INT32 = 1
|
|
UINT32 = 2
|
|
TENSOR_FLOAT32 = 3
|
|
TENSOR_INT32 = 4
|
|
TENSOR_QUANT8_ASYMM = 5
|
|
BOOL = 6
|
|
TENSOR_QUANT16_SYMM = 7
|
|
TENSOR_FLOAT16 = 8
|
|
TENSOR_BOOL8 = 9
|
|
FLOAT16 = 10
|
|
TENSOR_QUANT8_SYMM_PER_CHANNEL = 11
|
|
TENSOR_QUANT16_ASYMM = 12
|
|
|
|
|
|
class NNAPI_OperationCode(object):
|
|
ADD = 0
|
|
AVERAGE_POOL_2D = 1
|
|
CONCATENATION = 2
|
|
CONV_2D = 3
|
|
DEPTHWISE_CONV_2D = 4
|
|
DEPTH_TO_SPACE = 5
|
|
DEQUANTIZE = 6
|
|
EMBEDDING_LOOKUP = 7
|
|
FLOOR = 8
|
|
FULLY_CONNECTED = 9
|
|
HASHTABLE_LOOKUP = 10
|
|
L2_NORMALIZATION = 11
|
|
L2_POOL_2D = 12
|
|
LOCAL_RESPONSE_NORMALIZATION = 13
|
|
LOGISTIC = 14
|
|
LSH_PROJECTION = 15
|
|
LSTM = 16
|
|
MAX_POOL_2D = 17
|
|
MUL = 18
|
|
RELU = 19
|
|
RELU1 = 20
|
|
RELU6 = 21
|
|
RESHAPE = 22
|
|
RESIZE_BILINEAR = 23
|
|
RNN = 24
|
|
SOFTMAX = 25
|
|
SPACE_TO_DEPTH = 26
|
|
SVDF = 27
|
|
TANH = 28
|
|
BATCH_TO_SPACE_ND = 29
|
|
DIV = 30
|
|
MEAN = 31
|
|
PAD = 32
|
|
SPACE_TO_BATCH_ND = 33
|
|
SQUEEZE = 34
|
|
STRIDED_SLICE = 35
|
|
SUB = 36
|
|
TRANSPOSE = 37
|
|
ABS = 38
|
|
ARGMAX = 39
|
|
ARGMIN = 40
|
|
AXIS_ALIGNED_BBOX_TRANSFORM = 41
|
|
BIDIRECTIONAL_SEQUENCE_LSTM = 42
|
|
BIDIRECTIONAL_SEQUENCE_RNN = 43
|
|
BOX_WITH_NMS_LIMIT = 44
|
|
CAST = 45
|
|
CHANNEL_SHUFFLE = 46
|
|
DETECTION_POSTPROCESSING = 47
|
|
EQUAL = 48
|
|
EXP = 49
|
|
EXPAND_DIMS = 50
|
|
GATHER = 51
|
|
GENERATE_PROPOSALS = 52
|
|
GREATER = 53
|
|
GREATER_EQUAL = 54
|
|
GROUPED_CONV_2D = 55
|
|
HEATMAP_MAX_KEYPOINT = 56
|
|
INSTANCE_NORMALIZATION = 57
|
|
LESS = 58
|
|
LESS_EQUAL = 59
|
|
LOG = 60
|
|
LOGICAL_AND = 61
|
|
LOGICAL_NOT = 62
|
|
LOGICAL_OR = 63
|
|
LOG_SOFTMAX = 64
|
|
MAXIMUM = 65
|
|
MINIMUM = 66
|
|
NEG = 67
|
|
NOT_EQUAL = 68
|
|
PAD_V2 = 69
|
|
POW = 70
|
|
PRELU = 71
|
|
QUANTIZE = 72
|
|
QUANTIZED_16BIT_LSTM = 73
|
|
RANDOM_MULTINOMIAL = 74
|
|
REDUCE_ALL = 75
|
|
REDUCE_ANY = 76
|
|
REDUCE_MAX = 77
|
|
REDUCE_MIN = 78
|
|
REDUCE_PROD = 79
|
|
REDUCE_SUM = 80
|
|
ROI_ALIGN = 81
|
|
ROI_POOLING = 82
|
|
RSQRT = 83
|
|
SELECT = 84
|
|
SIN = 85
|
|
SLICE = 86
|
|
SPLIT = 87
|
|
SQRT = 88
|
|
TILE = 89
|
|
TOPK_V2 = 90
|
|
TRANSPOSE_CONV_2D = 91
|
|
UNIDIRECTIONAL_SEQUENCE_LSTM = 92
|
|
UNIDIRECTIONAL_SEQUENCE_RNN = 93
|
|
RESIZE_NEAREST_NEIGHBOR = 94
|
|
|
|
|
|
class NNAPI_FuseCode(object):
|
|
FUSED_NONE = 0
|
|
FUSED_RELU = 1
|
|
FUSED_RELU1 = 2
|
|
FUSED_RELU6 = 3
|
|
|
|
|
|
class OperandValueSourceType(object):
|
|
IMMEDIATE = 0
|
|
NUMBERED_BUFFER = 2
|
|
NUMBERED_MEMORY = 3
|
|
|
|
|
|
# Scalar types that appear explicitly in models.
|
|
# These must be kept in sync with
|
|
# AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS.
|
|
# TODO: Expose these directly to Python to avoid maintaining this list.
|
|
class TorchScalarTypes(enum.Enum):
|
|
QUINT8 = 13
|
|
|
|
|
|
def approx_equal(lhs, rhs, tolerance=1e-6):
|
|
return abs(lhs - rhs) <= tolerance * min(lhs, rhs)
|
|
|
|
|
|
def tensor_size(op_type, dims):
|
|
ITEM_SIZES = {
|
|
NNAPI_OperandCode.TENSOR_FLOAT32: 4,
|
|
NNAPI_OperandCode.TENSOR_INT32: 4,
|
|
NNAPI_OperandCode.TENSOR_QUANT8_ASYMM: 1,
|
|
NNAPI_OperandCode.TENSOR_QUANT16_SYMM: 2,
|
|
}
|
|
size = ITEM_SIZES[op_type]
|
|
for d in dims:
|
|
size *= d
|
|
return size
|
|
|
|
|
|
def change_element(tup, index, value):
|
|
ls = list(tup)
|
|
ls[index] = value
|
|
return tuple(ls)
|
|
|
|
|
|
class ConvPoolArgs2d(NamedTuple):
|
|
"""Configuration arguments for a convolution."""
|
|
kernel_h: int
|
|
kernel_w: int
|
|
stride_h: int
|
|
stride_w: int
|
|
pad_t: int
|
|
pad_b: int
|
|
pad_l: int
|
|
pad_r: int
|
|
dilation_h: int
|
|
dilation_w: int
|
|
group: int
|
|
|
|
|
|
class DimOrder(enum.Enum):
|
|
PRESUMED_CONTIGUOUS = 0
|
|
CHANNELS_LAST = 1
|
|
SCALAR_OR_VECTOR = 2
|
|
UNKNOWN_CONSTANT = 999
|
|
|
|
|
|
class Operand(NamedTuple):
|
|
"""Represenation of an NNAPI operand."""
|
|
|
|
# NNAPI operand type. One of NNAPI_OperandCode.
|
|
# TODO: Make this an enum.
|
|
op_type: int
|
|
|
|
# This is always the PyTorch shape, which is NCHW for feature maps.
|
|
# The actual NNAPI operand might have a transposed shape.
|
|
shape: Tuple[int, ...]
|
|
|
|
# Specifies how the shape of the operand that we define in NNAPI
|
|
# relates to the shape we track above.
|
|
# - PRESUMED_CONTIGUOUS: physical NNAPI operand will exactly match
|
|
# the shape of the PyTorch tensor.
|
|
# - CHANNELS_LAST: The PyTorch tensor is expected to be NCHW, and
|
|
# the NNAPI operand will be represented explicitly as NHWC.
|
|
dim_order: DimOrder
|
|
|
|
# Quantization params
|
|
scale: float
|
|
zero_point: int
|
|
|
|
def use_nchw(self):
|
|
if self.dim_order is DimOrder.PRESUMED_CONTIGUOUS:
|
|
return True
|
|
if self.dim_order is DimOrder.CHANNELS_LAST:
|
|
return False
|
|
raise Exception("Unknown dim order")
|
|
|
|
|
|
def broadcast_shapes(shape1, shape2):
|
|
assert len(shape1) > 0
|
|
assert len(shape2) > 0
|
|
s1 = list(shape1)
|
|
s2 = list(shape2)
|
|
# TODO: Support non-equal-rank broadcast where semantics match.
|
|
# This can be tricky for NHWC tensors because dimension orders
|
|
# don't match between PT and NNAPI, even though semantics match.
|
|
if len(s1) > len(s2):
|
|
# s2 = [1] * (len(s1) - len(s2)) + s2
|
|
raise Exception("Non-equal-rank broadcast is not supported yet.")
|
|
if len(s2) > len(s1):
|
|
# s3 = [1] * (len(s2) - len(s1)) + s1
|
|
raise Exception("Non-equal-rank broadcast is not supported yet.")
|
|
ret = []
|
|
for d1, d2 in zip(s1, s2):
|
|
if d1 == 1:
|
|
ret.append(d2)
|
|
elif d2 == 1:
|
|
ret.append(d1)
|
|
elif d1 == d2:
|
|
ret.append(d1)
|
|
else:
|
|
raise Exception("Cannot broadcast shapes: {} and {}".format(shape1, shape2))
|
|
return tuple(ret)
|
|
|
|
|
|
def get_conv_pool_shape(image_shape, args, out_ch, transpose):
|
|
batch, in_c, in_h, in_w = image_shape
|
|
|
|
# TODO: Handle dilation
|
|
if args.dilation_h != 1 or args.dilation_w != 1:
|
|
raise Exception("Dilation not supported yet.")
|
|
|
|
if transpose:
|
|
out_h = (in_h - 1) * args.stride_h + args.kernel_h - args.pad_t - args.pad_b
|
|
out_w = (in_w - 1) * args.stride_w + args.kernel_w - args.pad_l - args.pad_l
|
|
else:
|
|
out_h = (in_h - args.kernel_h + args.pad_t + args.pad_b) // args.stride_h + 1
|
|
out_w = (in_w - args.kernel_w + args.pad_l + args.pad_r) // args.stride_w + 1
|
|
|
|
# Handle variable-sized tensors.
|
|
if in_h == 0:
|
|
out_h = 0
|
|
if in_w == 0:
|
|
out_w = 0
|
|
|
|
out_shape = (batch, out_ch, out_h, out_w)
|
|
return out_shape
|
|
|
|
|
|
def fix_shape(shape, dim_order):
|
|
# Return the actual shape that an operand should have in NNAPI,
|
|
# given a PyTorch shape and dimension order. This is where we
|
|
# convert from PyTorch's "always NCHW" shape to explicit NHWC.
|
|
if dim_order is DimOrder.PRESUMED_CONTIGUOUS:
|
|
return shape
|
|
if dim_order is DimOrder.CHANNELS_LAST:
|
|
return tuple([shape[0]] + list(shape[2:]) + [shape[1]])
|
|
if dim_order is DimOrder.SCALAR_OR_VECTOR:
|
|
assert len(shape) == 0 or len(shape) == 1
|
|
return shape
|
|
if dim_order is DimOrder.UNKNOWN_CONSTANT:
|
|
# XXX think this through
|
|
return shape
|
|
raise Exception(f"Bad dim_order: {dim_order!r}.")
|
|
|
|
|
|
def reverse_map_dim(dim_order, d):
|
|
# Return the original PyTorch dimension position for a given dimension.
|
|
# d should be the dimension that NNAPI will see.
|
|
# reverse_map_dim(PRESUMED_CONTIGUOUS, x) == x
|
|
# reverse_map_dim(CHANNELS_LAST, 3) == 1
|
|
if dim_order is DimOrder.PRESUMED_CONTIGUOUS:
|
|
return d
|
|
assert dim_order is DimOrder.CHANNELS_LAST
|
|
return [0, 2, 3, 1][d]
|
|
|
|
|
|
def flex_name(op_id, dim):
|
|
# Return the local variable name for the computed flexible size
|
|
# for a given op and dimension.
|
|
return f"s_{op_id}_{dim}"
|
|
|
|
|
|
class _NnapiSerializer(object):
|
|
def __init__(self, config):
|
|
self.operands = []
|
|
self.values = []
|
|
self.operations = []
|
|
self.value_data = []
|
|
self.operation_args = []
|
|
self.inputs = []
|
|
self.outputs = []
|
|
self.flexible_shape_computation_lines = []
|
|
|
|
self.modules = {}
|
|
self.constants = {}
|
|
self.tensor_sequences = {}
|
|
self.jitval_operand_map = {}
|
|
self.cached_immediates = {}
|
|
self.used_weights = []
|
|
self.weight_offset = 0
|
|
|
|
if config is None:
|
|
config = {}
|
|
|
|
def get_next_operand_id(self):
|
|
return len(self.operands)
|
|
|
|
# Add a tensor operand corresponding to a JIT Value.
|
|
# Returns the NNAPI operand ID. Can be looked up later with
|
|
# get_tensor_operand_by_jitval.
|
|
def add_tensor_operand(self, jitval, oper):
|
|
assert isinstance(oper, Operand)
|
|
if jitval in self.jitval_operand_map:
|
|
raise Exception("Duplicate tensor: %r" % jitval)
|
|
|
|
operand_id = self.get_next_operand_id()
|
|
self.operands.append(oper)
|
|
self.jitval_operand_map[jitval] = operand_id
|
|
return operand_id
|
|
|
|
# Add a tensor operand that does not correspond to a JIT Value.
|
|
# Useful for cases where multiple NNAPI operands are required
|
|
# to implement one JIT IR node. Returns the NNAPI operand ID.
|
|
def add_anonymous_tensor_operand(self, oper):
|
|
assert isinstance(oper, Operand)
|
|
operand_id = self.get_next_operand_id()
|
|
self.operands.append(oper)
|
|
return operand_id
|
|
|
|
@staticmethod
|
|
def torch_tensor_to_operand(tensor, dim_order):
|
|
dtype = str(tensor.dtype).replace("torch.", "")
|
|
scale = 0.0
|
|
zero_point = 0
|
|
if dtype == "float32":
|
|
op_type = NNAPI_OperandCode.TENSOR_FLOAT32
|
|
elif dtype == "quint8":
|
|
op_type = NNAPI_OperandCode.TENSOR_QUANT8_ASYMM
|
|
scale = tensor.q_scale()
|
|
zero_point = tensor.q_zero_point()
|
|
elif dtype == "qint32":
|
|
op_type = NNAPI_OperandCode.TENSOR_INT32
|
|
scale = tensor.q_scale()
|
|
zero_point = tensor.q_zero_point()
|
|
assert zero_point == 0
|
|
else:
|
|
raise Exception(f"Can't handle input with dtype '{tensor.dtype}'")
|
|
return Operand(
|
|
shape=tuple(tensor.shape),
|
|
op_type=op_type,
|
|
dim_order=dim_order,
|
|
scale=scale,
|
|
zero_point=zero_point,
|
|
)
|
|
|
|
def add_tensor_operand_for_input(self, arg_idx, jitval, tensor):
|
|
dim_order = (
|
|
DimOrder.CHANNELS_LAST if getattr(tensor, "nnapi_nhwc", False)
|
|
else DimOrder.PRESUMED_CONTIGUOUS)
|
|
toper = self.torch_tensor_to_operand(tensor, dim_order)
|
|
operand_id = self.add_tensor_operand(jitval, toper)
|
|
self.inputs.append(operand_id)
|
|
for dim, size in enumerate(tensor.shape):
|
|
if size == 0:
|
|
self.compute_operand_shape(operand_id, dim, f"args[{arg_idx}].shape[{dim}]")
|
|
return operand_id
|
|
|
|
def add_tensor_operand_for_weight(self, tensor):
|
|
toper = self.torch_tensor_to_operand(tensor, DimOrder.UNKNOWN_CONSTANT)
|
|
operand_id = len(self.operands)
|
|
self.operands.append(toper)
|
|
tsize = tensor_size(toper.op_type, toper.shape)
|
|
psize = ((tsize - 1) | 0x3) + 1
|
|
self.values.append((operand_id, OperandValueSourceType.NUMBERED_BUFFER))
|
|
buf_num = len(self.used_weights)
|
|
offset = 0
|
|
self.value_data.append(struct.pack(
|
|
"iii",
|
|
buf_num,
|
|
offset,
|
|
tsize))
|
|
self.used_weights.append(tensor)
|
|
return operand_id
|
|
|
|
def add_immediate_operand(self, code, value, dims):
|
|
assert isinstance(dims, tuple)
|
|
cache_key = (code, value)
|
|
if cache_key not in self.cached_immediates:
|
|
operand_id = len(self.operands)
|
|
self.operands.append(Operand(code, dims, DimOrder.SCALAR_OR_VECTOR, 0.0, 0))
|
|
self.values.append((operand_id, OperandValueSourceType.IMMEDIATE))
|
|
self.value_data.append(value)
|
|
self.cached_immediates[cache_key] = operand_id
|
|
return self.cached_immediates[cache_key]
|
|
|
|
def add_immediate_int_scalar(self, value):
|
|
return self.add_immediate_operand(
|
|
NNAPI_OperandCode.INT32,
|
|
struct.pack("i", value),
|
|
())
|
|
|
|
def add_immediate_float_scalar(self, value):
|
|
return self.add_immediate_operand(
|
|
NNAPI_OperandCode.FLOAT32,
|
|
struct.pack("f", value),
|
|
())
|
|
|
|
def add_immediate_bool_scalar(self, value):
|
|
return self.add_immediate_operand(
|
|
NNAPI_OperandCode.BOOL,
|
|
b"\x01" if value else b"\x00",
|
|
())
|
|
|
|
def add_immediate_int_vector(self, value):
|
|
return self.add_immediate_operand(
|
|
NNAPI_OperandCode.TENSOR_INT32,
|
|
array.array("i", value).tobytes(),
|
|
(len(value),))
|
|
|
|
def get_tensor_operand_by_jitval(self, jitval):
|
|
operand_id = self.jitval_operand_map[jitval]
|
|
return (operand_id, self.operands[operand_id])
|
|
|
|
def get_tensor_operand_by_jitval_fixed_size(self, jitval):
|
|
op_id, oper = self.get_tensor_operand_by_jitval(jitval)
|
|
for s in oper.shape:
|
|
if s <= 0:
|
|
# TODO: Improve this error message, possibly after converting
|
|
# many callsites to support flexible size.
|
|
raise Exception("Flexible size is not supported for this operand.")
|
|
return op_id, oper
|
|
|
|
def get_tensor_operand_or_constant(self, jitval):
|
|
operand_id = self.jitval_operand_map.get(jitval)
|
|
if operand_id is None:
|
|
_, value = self.get_constant_value(jitval, "TensorType")
|
|
operand_id = self.add_tensor_operand_for_weight(value)
|
|
return (operand_id, self.operands[operand_id])
|
|
|
|
def get_tensor_operand_for_weight(self, jitval):
|
|
_, value = self.get_constant_value(jitval, "TensorType")
|
|
operand_id = self.add_tensor_operand_for_weight(value)
|
|
return (operand_id, self.operands[operand_id])
|
|
|
|
def add_operation(self, opcode, inputs, outputs):
|
|
self.operations.append((opcode, len(inputs), len(outputs)))
|
|
self.operation_args.extend(inputs + outputs)
|
|
|
|
def add_tensor_sequence(self, jitval, values):
|
|
assert jitval not in self.tensor_sequences
|
|
self.tensor_sequences[jitval] = values
|
|
|
|
def add_constant_value(self, jitval, ctype, value):
|
|
assert jitval not in self.constants
|
|
self.constants[jitval] = (ctype, value)
|
|
|
|
def get_constant_value(self, jitval, typekind=None):
|
|
record = self.constants.get(jitval)
|
|
if record is None:
|
|
raise Exception(f"Could not find constant value for '{jitval!r}'.")
|
|
ctype, _ = record
|
|
if typekind is not None and ctype.kind() != typekind:
|
|
raise Exception(
|
|
f"Expected constant value of type {typekind}, but got {ctype.kind()} for value '{jitval!r}'")
|
|
return record
|
|
|
|
@staticmethod
|
|
def operand_to_template_torchscript(op_id, oper):
|
|
"""Return a TorchScript expression to build a template for a given operand."""
|
|
shape_parts = ["("]
|
|
for d, s in enumerate(oper.shape):
|
|
if s > 0:
|
|
# Fixed shape dimension: just add the value.
|
|
shape_parts.append(str(s))
|
|
else:
|
|
# Flexible shape dimension: it should have been computed in a variable.
|
|
shape_parts.append(flex_name(op_id, d))
|
|
shape_parts.append(",")
|
|
shape_parts.append(")")
|
|
shape_code = "".join(shape_parts)
|
|
if oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32:
|
|
return f"torch.zeros({shape_code}, dtype=torch.float32)"
|
|
elif oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM:
|
|
return (
|
|
f"torch.quantize_per_tensor("
|
|
f"torch.zeros(1), scale={oper.scale}, zero_point={oper.zero_point}, dtype=torch.quint8)"
|
|
f".expand({shape_code}).contiguous()"
|
|
)
|
|
raise Exception(f"Unsupported output operand type: {oper.op_type}")
|
|
|
|
def forward_operand_shape(self, out_op_id, out_dim, in_op_id, in_dim):
|
|
self.compute_operand_shape(out_op_id, out_dim, flex_name(in_op_id, in_dim))
|
|
|
|
def compute_operand_shape(self, op_id, dim, expr):
|
|
self.flexible_shape_computation_lines.append(f"{flex_name(op_id, dim)} = {expr}")
|
|
|
|
def transpose_to_nhwc(self, in_id, oper):
|
|
if oper.shape[2:] != (1, 1):
|
|
raise Exception("Automatic transpose only supported for H,W == 1,1")
|
|
|
|
out_oper = oper._replace(dim_order=DimOrder.CHANNELS_LAST)
|
|
|
|
inputs = [None] * 2
|
|
inputs[0] = in_id
|
|
inputs[1] = self.add_immediate_int_vector([0, 2, 3, 1])
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_anonymous_tensor_operand(out_oper)
|
|
|
|
self.add_operation(NNAPI_OperationCode.TRANSPOSE, inputs, outputs)
|
|
|
|
return outputs[0], out_oper
|
|
|
|
# Transpose inputs as necessary to allow broadcasting.
|
|
def transpose_for_broadcast(self, in0_id, in0_oper, in1_id, in1_oper):
|
|
if in0_oper.dim_order == in1_oper.dim_order:
|
|
return in0_id, in0_oper, in1_id, in1_oper
|
|
|
|
# Assume NHWC is preferred if there is a mismatch.
|
|
orders = (in0_oper.dim_order, in1_oper.dim_order)
|
|
if orders == (DimOrder.PRESUMED_CONTIGUOUS, DimOrder.CHANNELS_LAST):
|
|
return self.transpose_to_nhwc(in0_id, in0_oper) + (in1_id, in1_oper)
|
|
if orders == (DimOrder.CHANNELS_LAST, DimOrder.PRESUMED_CONTIGUOUS):
|
|
return (in0_id, in0_oper) + self.transpose_to_nhwc(in1_id, in1_oper)
|
|
|
|
raise Exception(
|
|
"Automatic transpose not supported for dim_orders: %r, %r" %
|
|
(in0_oper.dim_order, in1_oper.dim_order))
|
|
|
|
def get_size_arg(self, jitval):
|
|
ctype, value = self.get_constant_value(jitval)
|
|
if ctype.kind() == "ListType":
|
|
assert ctype.getElementType().kind() == "IntType"
|
|
return value
|
|
raise Exception(f"Can't handle size arg of type '{ctype!r}' for '{jitval!r}'")
|
|
|
|
def get_conv_pool_args_2d_from_pack(self, kernel_size, packed_config):
|
|
pc = [i.item() for i in packed_config]
|
|
assert pc[0] == 2
|
|
strides = [pc[1], pc[2]]
|
|
paddings = [pc[3], pc[4]]
|
|
dilations = [pc[5], pc[6]]
|
|
output_padding = [pc[7], pc[8]]
|
|
group_num = pc[9]
|
|
transpose = pc[10]
|
|
|
|
assert len(pc) == 11
|
|
assert output_padding == [0, 0]
|
|
assert transpose == 0
|
|
|
|
return self.get_conv_pool_args_2d_common(kernel_size, strides, paddings, dilations, group_num)
|
|
|
|
def get_conv_pool_args_2d_from_jit(self, kernel_size, stride, padding, dilation, group=None):
|
|
strides = self.get_size_arg(stride)
|
|
paddings = self.get_size_arg(padding)
|
|
dilations = self.get_size_arg(dilation)
|
|
if group is not None:
|
|
_, group_num = self.get_constant_value(group, "IntType")
|
|
else:
|
|
group_num = None
|
|
return self.get_conv_pool_args_2d_common(kernel_size, strides, paddings, dilations, group_num)
|
|
|
|
def get_conv_pool_args_2d_common(self, kernel_size, strides, paddings, dilations, group_num):
|
|
kernels = list(kernel_size)
|
|
|
|
assert len(kernels) == 2
|
|
assert len(strides) == 2
|
|
assert len(paddings) == 2
|
|
assert len(dilations) == 2
|
|
|
|
# NNAPI uses 4 values for padding.
|
|
ph, pw = paddings
|
|
real_paddings = [ph, ph, pw, pw]
|
|
|
|
return ConvPoolArgs2d(*(kernels + strides + real_paddings + dilations + [group_num]))
|
|
|
|
def serialize_model(self, model, inputs):
|
|
self.add_immediate_bool_scalar(False)
|
|
self.add_immediate_bool_scalar(True)
|
|
|
|
inp_dim_orders = []
|
|
out_dim_orders = []
|
|
|
|
self_jitval = next(model.graph.inputs())
|
|
self.add_constant_value(self_jitval, self_jitval.type(), model)
|
|
|
|
for arg_idx, (input_value, input_tensor) in enumerate(zip(list(model.graph.inputs())[1:], inputs)):
|
|
op_id = self.add_tensor_operand_for_input(arg_idx, input_value, input_tensor)
|
|
inp_dim_orders.append(self.operands[op_id].dim_order.value)
|
|
|
|
for idx, node in enumerate(model.graph.nodes()):
|
|
LOG.debug("Processing node #%d: %r", idx, node)
|
|
self.add_node(node)
|
|
|
|
retn = model.graph.return_node()
|
|
assert retn.inputsSize() == 1
|
|
assert retn.outputsSize() == 0
|
|
retn_input = retn.inputsAt(0)
|
|
template_return_lines = ["return ["]
|
|
if retn_input.type().kind() == "TensorType":
|
|
return_values = [retn_input]
|
|
retval_count = -1
|
|
elif retn_input.type().kind() == "TupleType":
|
|
return_values = self.tensor_sequences[retn_input]
|
|
retval_count = len(return_values)
|
|
else:
|
|
raise Exception(f"Unsupported return type: {retn_input.type()}")
|
|
|
|
for v in return_values:
|
|
op_id = self.jitval_operand_map[v]
|
|
self.outputs.append(op_id)
|
|
out_dim_orders.append(self.operands[op_id].dim_order.value)
|
|
template_return_lines.append(self.operand_to_template_torchscript(op_id, self.operands[op_id]) + ",")
|
|
template_return_lines.append("]")
|
|
|
|
model = []
|
|
|
|
version = 1
|
|
header = struct.pack(
|
|
"iiiiii",
|
|
version,
|
|
len(self.operands),
|
|
len(self.values),
|
|
len(self.operations),
|
|
len(self.inputs),
|
|
len(self.outputs),
|
|
)
|
|
model.append(header)
|
|
|
|
serialized_values, serialized_value_data = self.serialize_values()
|
|
|
|
model.extend(struct.pack("iifi", t, len(d), s, z) for (t, d, _m, s, z) in self.operands)
|
|
model.extend(serialized_values)
|
|
model.extend(struct.pack("iii", *x) for x in self.operations)
|
|
|
|
# Compact the model so we can get its length so far.
|
|
model = [b"".join(model)]
|
|
model_offset = len(model[0])
|
|
# Model offset is the index into the model (in 32-bit words, not bytes)
|
|
# of the next dimension we're about to serialize. If it's 0,
|
|
# generate code to mutate it before passing to NNAPI.
|
|
assert model_offset % 4 == 0
|
|
model_offset = int(model_offset / 4)
|
|
|
|
for (op_id, (_, dims, dim_order, _, _)) in enumerate(self.operands):
|
|
shape = fix_shape(dims, dim_order)
|
|
for d, s in enumerate(shape):
|
|
if s == 0:
|
|
pt_d = reverse_map_dim(dim_order, d)
|
|
self.flexible_shape_computation_lines.append(
|
|
f"ser_model[{model_offset}] = {flex_name(op_id, pt_d)}")
|
|
model_offset += 1
|
|
model.append(self.serialize_ints(shape))
|
|
|
|
model.extend(serialized_value_data)
|
|
model.append(self.serialize_ints(self.operation_args))
|
|
model.append(self.serialize_ints(self.inputs))
|
|
model.append(self.serialize_ints(self.outputs))
|
|
|
|
self.flexible_shape_computation_lines.extend(template_return_lines)
|
|
|
|
return (
|
|
array.array("i", b"".join(model)),
|
|
self.used_weights,
|
|
inp_dim_orders,
|
|
out_dim_orders,
|
|
self.flexible_shape_computation_lines,
|
|
retval_count,
|
|
)
|
|
|
|
def serialize_values(self):
|
|
serialized_values = []
|
|
serialized_value_data = []
|
|
assert len(self.values) == len(self.value_data)
|
|
for ((op_index, source_type), data) in zip(self.values, self.value_data):
|
|
source_length = len(data)
|
|
|
|
# Pad with 0 bytes out to a multiple of 4 for alignment.
|
|
physical_length = ((source_length - 1) | 0x3) + 1
|
|
padded_data = data + (b"\0" * (physical_length - source_length))
|
|
|
|
serialized_values.append(struct.pack("iii", op_index, source_type, source_length))
|
|
serialized_value_data.append(padded_data)
|
|
|
|
return serialized_values, serialized_value_data
|
|
|
|
@staticmethod
|
|
def serialize_ints(ints):
|
|
return array.array("i", ints).tobytes()
|
|
|
|
ADDER_MAP = {
|
|
"prim::GetAttr": lambda self, node:
|
|
self.add_getattr(node),
|
|
"prim::Constant": lambda self, node:
|
|
self.add_constant_node(node),
|
|
"prim::ListConstruct": lambda self, node:
|
|
self.add_list_construct(node),
|
|
"prim::TupleConstruct": lambda self, node:
|
|
self.add_tuple_construct(node),
|
|
"aten::unsqueeze": lambda self, node:
|
|
self.add_unsqueeze(node),
|
|
"aten::reshape": lambda self, node:
|
|
self.add_reshape(node),
|
|
"aten::size": lambda self, node:
|
|
self.add_size(node),
|
|
"aten::cat": lambda self, node:
|
|
self.add_cat(node),
|
|
"aten::mean": lambda self, node:
|
|
self.add_mean(node),
|
|
"aten::quantize_per_tensor": lambda self, node:
|
|
self.add_quantize(node),
|
|
"aten::dequantize": lambda self, node:
|
|
self.add_dequantize(node),
|
|
"aten::add": lambda self, node:
|
|
self.add_add_sub_op(node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_NONE),
|
|
"aten::sub": lambda self, node:
|
|
self.add_add_sub_op(node, NNAPI_OperationCode.SUB, NNAPI_FuseCode.FUSED_NONE),
|
|
"aten::mul": lambda self, node:
|
|
self.add_pointwise_simple_binary_broadcast_op(node, NNAPI_OperationCode.MUL, NNAPI_FuseCode.FUSED_NONE),
|
|
"aten::relu": lambda self, node:
|
|
self.add_pointwise_simple_unary_op(node, NNAPI_OperationCode.RELU),
|
|
"aten::sigmoid": lambda self, node:
|
|
self.add_pointwise_simple_unary_op(node, NNAPI_OperationCode.LOGISTIC),
|
|
"aten::hardtanh": lambda self, node:
|
|
self.add_hardtanh(node),
|
|
"aten::max_pool2d": lambda self, node:
|
|
self.add_pool2d_node(node, NNAPI_OperationCode.MAX_POOL_2D),
|
|
"aten::adaptive_avg_pool2d": lambda self, node:
|
|
self.add_adaptive_avg_pool2d(node),
|
|
"aten::upsample_nearest2d": lambda self, node:
|
|
self.add_upsample_nearest2d(node),
|
|
"aten::prelu": lambda self, node:
|
|
self.add_prelu_op(node),
|
|
"aten::addmm": lambda self, node:
|
|
self.add_addmm(node),
|
|
"aten::linear": lambda self, node:
|
|
self.add_linear(node),
|
|
"aten::_convolution": lambda self, node:
|
|
self.add_conv_underscore(node),
|
|
"aten::conv2d": lambda self, node:
|
|
self.add_conv2d(node),
|
|
"quantized::linear": lambda self, node:
|
|
self.add_qlinear(node),
|
|
"quantized::conv2d": lambda self, node:
|
|
self.add_qconv2d(node, NNAPI_FuseCode.FUSED_NONE),
|
|
"quantized::conv2d_relu": lambda self, node:
|
|
self.add_qconv2d(node, NNAPI_FuseCode.FUSED_RELU),
|
|
"quantized::add": lambda self, node:
|
|
self.add_qadd(node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_NONE),
|
|
"quantized::add_relu": lambda self, node:
|
|
self.add_qadd(node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_RELU),
|
|
}
|
|
|
|
def add_node(self, node):
|
|
adder = self.ADDER_MAP.get(node.kind())
|
|
if not adder:
|
|
raise Exception("Unsupported node kind (%r) in node %r" % (node.kind(), node))
|
|
adder(self, node)
|
|
|
|
def add_getattr(self, node):
|
|
assert node.inputsSize() == 1
|
|
assert node.outputsSize() == 1
|
|
obj_ctype, obj = self.get_constant_value(node.inputsAt(0))
|
|
assert str(obj_ctype).startswith("__torch__.")
|
|
name = node.s("name")
|
|
value = getattr(obj, name)
|
|
output = node.outputsAt(0)
|
|
ctype = output.type()
|
|
self.add_constant_value(output, ctype, value)
|
|
|
|
def add_constant_node(self, node):
|
|
assert node.inputsSize() == 0
|
|
assert node.outputsSize() == 1
|
|
output = node.outputsAt(0)
|
|
ctype = output.type()
|
|
value = output.toIValue()
|
|
self.add_constant_value(output, ctype, value)
|
|
|
|
def add_list_construct(self, node):
|
|
assert node.outputsSize() == 1
|
|
output = node.outputsAt(0)
|
|
ctype = output.type()
|
|
const_vals = []
|
|
tensors = []
|
|
for inp in node.inputs():
|
|
if const_vals is not None and inp in self.constants:
|
|
_, val = self.get_constant_value(inp)
|
|
const_vals.append(val)
|
|
else:
|
|
const_vals = None
|
|
if tensors is not None and inp.type().kind() == "TensorType":
|
|
tensors.append(inp)
|
|
else:
|
|
tensros = None
|
|
if const_vals is not None:
|
|
# NOTE: Now that TorchScript supports list constants,
|
|
# this code path might not be used anymore.
|
|
self.add_constant_value(output, ctype, const_vals)
|
|
if tensors is not None:
|
|
self.add_tensor_sequence(output, tensors)
|
|
if const_vals is None and tensors is None:
|
|
raise Exception(
|
|
"Unable to handle ListConstruct node."
|
|
" Neither all constants nor all tensors. %r" % node)
|
|
|
|
def add_tuple_construct(self, node):
|
|
assert node.outputsSize() == 1
|
|
output = node.outputsAt(0)
|
|
values = []
|
|
for inp in node.inputs():
|
|
values.append(inp)
|
|
self.add_tensor_sequence(output, values)
|
|
|
|
def add_unsqueeze(self, node):
|
|
assert node.inputsSize() == 2
|
|
assert node.outputsSize() == 1
|
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
|
|
|
|
_, dim = self.get_constant_value(node.inputsAt(1), "IntType")
|
|
assert in_oper.dim_order == DimOrder.PRESUMED_CONTIGUOUS
|
|
|
|
real_dim = dim if dim >= 0 else dim + len(in_oper.shape) + 1
|
|
out_shape_list = list(in_oper.shape)
|
|
out_shape_list.insert(real_dim, 1)
|
|
out_shape = tuple(out_shape_list)
|
|
out_oper = in_oper._replace(shape=out_shape)
|
|
|
|
inputs = [None] * 2
|
|
inputs[0] = in_id
|
|
inputs[1] = self.add_immediate_int_scalar(dim)
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
|
|
|
|
self.add_operation(NNAPI_OperationCode.EXPAND_DIMS, inputs, outputs)
|
|
|
|
def add_reshape(self, node):
|
|
assert node.inputsSize() == 2
|
|
assert node.outputsSize() == 1
|
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
|
|
|
|
shape_ctype, shape = self.get_constant_value(node.inputsAt(1))
|
|
assert shape_ctype.kind() == "ListType"
|
|
assert shape_ctype.getElementType().kind() == "IntType"
|
|
is_trivial_reshape = len(shape) == 2 and shape[1] == -1
|
|
|
|
if in_oper.dim_order != DimOrder.PRESUMED_CONTIGUOUS and not is_trivial_reshape:
|
|
raise Exception(
|
|
"Currently, reshape is only supported on NHWC tensors if the target size is [X, -1].")
|
|
|
|
# Bit of a hack here. Use a real tensor to infer the output shape.
|
|
out_shape = torch.zeros(1).expand(in_oper.shape).reshape(shape).shape
|
|
out_oper = in_oper._replace(shape=out_shape, dim_order=DimOrder.PRESUMED_CONTIGUOUS)
|
|
|
|
inputs = [None] * 2
|
|
inputs[0] = in_id
|
|
inputs[1] = self.add_immediate_int_vector(shape)
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
|
|
|
|
self.add_operation(NNAPI_OperationCode.RESHAPE, inputs, outputs)
|
|
|
|
def add_size(self, node):
|
|
assert node.inputsSize() == 2
|
|
assert node.outputsSize() == 1
|
|
|
|
_, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
|
|
_, value = self.constants[node.inputsAt(1)]
|
|
res = in_oper.shape[value]
|
|
output = node.outputsAt(0)
|
|
self.add_constant_value(output, output.type(), res)
|
|
|
|
def add_cat(self, node):
|
|
assert node.inputsSize() == 2
|
|
assert node.outputsSize() == 1
|
|
|
|
tensors = self.tensor_sequences[node.inputsAt(0)]
|
|
_, dim = self.get_constant_value(node.inputsAt(1), "IntType")
|
|
|
|
assert len(tensors) > 0
|
|
in_ids = []
|
|
out_oper = None
|
|
out_dim_size = 0
|
|
for inp in tensors:
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(inp)
|
|
if out_oper is None:
|
|
out_shape = change_element(in_oper.shape, dim, -1)
|
|
out_oper = in_oper._replace(shape=out_shape)
|
|
assert in_oper.op_type == out_oper.op_type
|
|
assert in_oper.dim_order == out_oper.dim_order
|
|
assert change_element(in_oper.shape, dim, -1) == change_element(out_oper.shape, dim, -1)
|
|
# TODO: Possibly check scale and zero point.
|
|
in_ids.append(in_id)
|
|
# TODO: Possibly support variable-sized inputs.
|
|
out_dim_size += in_oper.shape[dim]
|
|
|
|
out_oper = out_oper._replace(shape=change_element(out_oper.shape, dim, out_dim_size))
|
|
|
|
if in_oper.dim_order == DimOrder.CHANNELS_LAST:
|
|
assert len(out_oper.shape) == 4
|
|
nnapi_dim = [0, 3, 1, 2][dim]
|
|
else:
|
|
nnapi_dim = dim
|
|
|
|
inputs = in_ids + [self.add_immediate_int_scalar(nnapi_dim)]
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
|
|
|
|
self.add_operation(NNAPI_OperationCode.CONCATENATION, inputs, outputs)
|
|
|
|
def add_mean(self, node):
|
|
assert node.inputsSize() == 4
|
|
assert node.outputsSize() == 1
|
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
|
|
dim_ctype, dim = self.get_constant_value(node.inputsAt(1))
|
|
assert dim_ctype.kind() == "ListType"
|
|
assert dim_ctype.getElementType().kind() == "IntType"
|
|
_, keep_dim = self.get_constant_value(node.inputsAt(2), "BoolType")
|
|
# Expect None for dtype
|
|
self.get_constant_value(node.inputsAt(3), "NoneType")
|
|
|
|
if in_oper.dim_order == DimOrder.CHANNELS_LAST:
|
|
assert len(in_oper.shape) == 4
|
|
nnapi_dim = [[0, 3, 1, 2][d] for d in dim]
|
|
else:
|
|
nnapi_dim = dim
|
|
|
|
collapsed_dims = set()
|
|
for d in dim:
|
|
if d < 0:
|
|
d += len(in_oper.shape)
|
|
collapsed_dims.add(d)
|
|
|
|
if in_oper.dim_order == DimOrder.CHANNELS_LAST and not keep_dim:
|
|
assert collapsed_dims.issuperset({2, 3})
|
|
out_dim_order = DimOrder.PRESUMED_CONTIGUOUS
|
|
else:
|
|
out_dim_order = in_oper.dim_order
|
|
|
|
out_shape = []
|
|
for i, s in enumerate(in_oper.shape):
|
|
if i not in collapsed_dims:
|
|
out_shape.append(s)
|
|
elif keep_dim:
|
|
out_shape.append(1)
|
|
|
|
out_oper = in_oper._replace(shape=out_shape, dim_order=out_dim_order)
|
|
|
|
inputs = [None] * 3
|
|
inputs[0] = in_id
|
|
inputs[1] = self.add_immediate_int_vector(nnapi_dim)
|
|
inputs[2] = self.add_immediate_int_scalar(keep_dim)
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
|
|
|
|
self.add_operation(NNAPI_OperationCode.MEAN, inputs, outputs)
|
|
|
|
def add_quantize(self, node):
|
|
assert node.inputsSize() == 4
|
|
assert node.outputsSize() == 1
|
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
|
|
if in_oper.dim_order != DimOrder.CHANNELS_LAST:
|
|
raise Exception(
|
|
"Most hardware backends prefer NHWC quantized tensors. "
|
|
"Try setting `t.nnapi_nhwc = True` on your tensor inputs. ")
|
|
_, scale = self.get_constant_value(node.inputsAt(1), "FloatType")
|
|
_, zero_point = self.get_constant_value(node.inputsAt(2), "IntType")
|
|
_, scalar_type = self.get_constant_value(node.inputsAt(3), "IntType")
|
|
if scalar_type != TorchScalarTypes.QUINT8.value:
|
|
raise Exception(
|
|
"PyTorch NNAPI export only supports quantized tensors "
|
|
"with the quint8 dtype.")
|
|
op_type = NNAPI_OperandCode.TENSOR_QUANT8_ASYMM
|
|
|
|
out_oper = in_oper._replace(
|
|
op_type=op_type,
|
|
scale=scale,
|
|
zero_point=zero_point,
|
|
)
|
|
|
|
inputs = [None] * 1
|
|
inputs[0] = in_id
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
|
|
|
|
self.add_operation(NNAPI_OperationCode.QUANTIZE, inputs, outputs)
|
|
|
|
def add_dequantize(self, node):
|
|
assert node.inputsSize() == 1
|
|
assert node.outputsSize() == 1
|
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
|
|
out_oper = in_oper._replace(
|
|
op_type=NNAPI_OperandCode.TENSOR_FLOAT32,
|
|
scale=0.0,
|
|
zero_point=0,
|
|
)
|
|
|
|
inputs = [None] * 1
|
|
inputs[0] = in_id
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
|
|
|
|
self.add_operation(NNAPI_OperationCode.DEQUANTIZE, inputs, outputs)
|
|
|
|
def add_pointwise_simple_unary_op(self, node, opcode):
|
|
assert node.inputsSize() == 1
|
|
assert node.outputsSize() == 1
|
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
|
|
|
|
inputs = [None] * 1
|
|
inputs[0] = in_id
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), in_oper)
|
|
|
|
self.add_operation(opcode, inputs, outputs)
|
|
|
|
def _do_add_binary(self, node, opcode, fuse_code, *, qparams=None):
|
|
"""Helper for pointwise binary broadcast ops with superfluous extra args"""
|
|
assert node.outputsSize() == 1
|
|
|
|
assert node.inputsAt(0).type().kind() == "TensorType"
|
|
assert node.inputsAt(1).type().kind() == "TensorType"
|
|
|
|
# TODO: Should support constant as either operand.
|
|
in0_id, in0_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
|
|
in1_id, in1_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(1))
|
|
|
|
assert in0_oper.op_type == in1_oper.op_type
|
|
in0_id, in0_oper, in1_id, in1_oper = self.transpose_for_broadcast(
|
|
in0_id, in0_oper, in1_id, in1_oper)
|
|
# NOTE: PyTorch and NNAPI have the same broadcast semantics.
|
|
out_shape = broadcast_shapes(in0_oper.shape, in1_oper.shape)
|
|
out_oper = in0_oper._replace(shape=out_shape)
|
|
if qparams is not None:
|
|
scale, zp = qparams
|
|
out_oper = out_oper._replace(scale=scale, zero_point=zp)
|
|
|
|
inputs = [None] * 3
|
|
inputs[0] = in0_id
|
|
inputs[1] = in1_id
|
|
inputs[2] = self.add_immediate_int_scalar(fuse_code)
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
|
|
|
|
self.add_operation(opcode, inputs, outputs)
|
|
|
|
def add_pointwise_simple_binary_broadcast_op(self, node, opcode, fuse_code):
|
|
assert node.inputsSize() == 2
|
|
self._do_add_binary(node, opcode, fuse_code)
|
|
|
|
def add_add_sub_op(self, node, opcode, fuse_code):
|
|
assert node.inputsSize() == 3
|
|
|
|
_, alpha = self.get_constant_value(node.inputsAt(2), "IntType")
|
|
if alpha != 1:
|
|
raise Exception("NNAPI does not support add/sub with alpha.")
|
|
|
|
self._do_add_binary(node, opcode, fuse_code)
|
|
|
|
def add_qadd(self, node, opcode, fuse_code):
|
|
assert node.inputsSize() == 4
|
|
|
|
_, scale = self.get_constant_value(node.inputsAt(2), "FloatType")
|
|
_, zero_point = self.get_constant_value(node.inputsAt(3), "IntType")
|
|
|
|
self._do_add_binary(node, opcode, fuse_code, qparams=(scale, zero_point))
|
|
|
|
def add_hardtanh(self, node):
|
|
assert node.inputsSize() == 3
|
|
assert node.outputsSize() == 1
|
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
|
|
_, min_val = self.get_constant_value(node.inputsAt(1), "FloatType")
|
|
_, max_val = self.get_constant_value(node.inputsAt(2), "FloatType")
|
|
|
|
op_map = {
|
|
(-1, 1): NNAPI_OperationCode.RELU1,
|
|
( 0, 6): NNAPI_OperationCode.RELU6, # noqa: E201
|
|
}
|
|
|
|
opcode = op_map.get((min_val, max_val))
|
|
if opcode is None:
|
|
raise Exception("NNAPI only supports hardtanh with args (-1, 1) or (0, 6).")
|
|
|
|
inputs = [None] * 1
|
|
inputs[0] = in_id
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), in_oper)
|
|
|
|
self.add_operation(opcode, inputs, outputs)
|
|
|
|
def add_prelu_op(self, node):
|
|
assert node.inputsSize() == 2
|
|
assert node.outputsSize() == 1
|
|
|
|
assert node.inputsAt(0).type().kind() == "TensorType"
|
|
assert node.inputsAt(1).type().kind() == "TensorType"
|
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
|
|
w_id, w_oper = self.get_tensor_operand_for_weight(node.inputsAt(1))
|
|
assert len(w_oper.shape) == 1
|
|
assert w_oper.shape[0] > 0
|
|
if w_oper.shape[0] > 1:
|
|
if in_oper.use_nchw():
|
|
# TODO: Support this by adding trailing 1 dims.
|
|
raise Exception("Per-channel PReLU only supports channels_last right now.")
|
|
|
|
out_id = self.add_tensor_operand(node.outputsAt(0), in_oper)
|
|
for dim, size in enumerate(in_oper.shape):
|
|
if size > 0:
|
|
pass
|
|
elif dim <= 1:
|
|
raise Exception("PReLU requires fixed size for dim 0 and dim 1.")
|
|
else:
|
|
self.forward_operand_shape(out_id, dim, in_id, dim)
|
|
|
|
inputs = [None] * 2
|
|
inputs[0] = in_id
|
|
inputs[1] = w_id
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = out_id
|
|
|
|
self.add_operation(NNAPI_OperationCode.PRELU, inputs, outputs)
|
|
|
|
def add_pool2d_node(self, node, opcode):
|
|
assert node.inputsSize() == 6
|
|
assert node.outputsSize() == 1
|
|
image, kernel, stride, padding, dilation, ceil_mode = node.inputs()
|
|
|
|
stride = stride or kernel
|
|
|
|
# TODO: Validate ceil_mode semantics.
|
|
|
|
args = self.get_conv_pool_args_2d_from_jit(self.get_size_arg(kernel), stride, padding, dilation)
|
|
if args.dilation_h != 1 or args.dilation_w != 1:
|
|
raise Exception("NNAPI does not support dilated pooling.")
|
|
|
|
image_id, image_oper = self.get_tensor_operand_by_jitval_fixed_size(image)
|
|
assert len(image_oper.shape) == 4
|
|
|
|
out_shape = get_conv_pool_shape(image_oper.shape, args, image_oper.shape[1], False)
|
|
use_nchw = image_oper.use_nchw()
|
|
|
|
inputs = [None] * 11
|
|
inputs[0] = image_id
|
|
inputs[1] = self.add_immediate_int_scalar(args.pad_l)
|
|
inputs[2] = self.add_immediate_int_scalar(args.pad_r)
|
|
inputs[3] = self.add_immediate_int_scalar(args.pad_t)
|
|
inputs[4] = self.add_immediate_int_scalar(args.pad_b)
|
|
inputs[5] = self.add_immediate_int_scalar(args.stride_w)
|
|
inputs[6] = self.add_immediate_int_scalar(args.stride_h)
|
|
inputs[7] = self.add_immediate_int_scalar(args.kernel_w)
|
|
inputs[8] = self.add_immediate_int_scalar(args.kernel_h)
|
|
inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
|
|
inputs[10] = self.add_immediate_bool_scalar(use_nchw)
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), image_oper._replace(shape=out_shape))
|
|
|
|
self.add_operation(opcode, inputs, outputs)
|
|
|
|
def add_adaptive_avg_pool2d(self, node):
|
|
assert node.inputsSize() == 2
|
|
assert node.outputsSize() == 1
|
|
|
|
image_id, image_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
|
|
assert len(image_oper.shape) == 4
|
|
|
|
size_ctype, size_arg = self.get_constant_value(node.inputsAt(1))
|
|
assert size_ctype.kind() == "ListType"
|
|
assert size_ctype.getElementType().kind() == "IntType"
|
|
if size_arg != [1, 1]:
|
|
raise Exception("NNAPI only supports adaptive_avg_pool2d with output size (1, 1).")
|
|
|
|
out_shape = image_oper.shape[0:2] + tuple(size_arg)
|
|
use_nchw = image_oper.use_nchw()
|
|
|
|
inputs = [None] * 11
|
|
inputs[0] = image_id
|
|
inputs[1] = self.add_immediate_int_scalar(0)
|
|
inputs[2] = self.add_immediate_int_scalar(0)
|
|
inputs[3] = self.add_immediate_int_scalar(0)
|
|
inputs[4] = self.add_immediate_int_scalar(0)
|
|
inputs[5] = self.add_immediate_int_scalar(1)
|
|
inputs[6] = self.add_immediate_int_scalar(1)
|
|
inputs[7] = self.add_immediate_int_scalar(image_oper.shape[3])
|
|
inputs[8] = self.add_immediate_int_scalar(image_oper.shape[2])
|
|
inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
|
|
inputs[10] = self.add_immediate_bool_scalar(use_nchw)
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), image_oper._replace(shape=out_shape))
|
|
|
|
self.add_operation(NNAPI_OperationCode.AVERAGE_POOL_2D, inputs, outputs)
|
|
|
|
def add_upsample_nearest2d(self, node):
|
|
assert node.inputsSize() == 3
|
|
assert node.outputsSize() == 1
|
|
image, size_jit, scale_jit = node.inputs()
|
|
size_ctype, size_arg = self.get_constant_value(size_jit)
|
|
scale_ctype, scale_arg = self.get_constant_value(scale_jit)
|
|
|
|
image_id, image_oper = self.get_tensor_operand_by_jitval_fixed_size(image)
|
|
assert len(image_oper.shape) == 4
|
|
|
|
if size_ctype.kind() != "NoneType" and scale_ctype.kind() != "NoneType":
|
|
raise Exception("Size and scale cannot both be non-None.")
|
|
elif size_ctype.kind() != "NoneType":
|
|
assert size_ctype.kind() == "ListType"
|
|
assert size_ctype.getElementType().kind() == "IntType"
|
|
assert scale_ctype.kind() == "NoneType"
|
|
assert scale_arg is None
|
|
assert isinstance(size_arg, list)
|
|
assert size_arg
|
|
assert all(isinstance(val, int) for val in size_arg)
|
|
if len(size_arg) == 1:
|
|
size_arg = size_arg * 2
|
|
assert len(size_arg) == 2
|
|
out_h = size_arg[0]
|
|
out_w = size_arg[1]
|
|
arg_h = self.add_immediate_int_scalar(out_h)
|
|
arg_w = self.add_immediate_int_scalar(out_w)
|
|
elif scale_ctype.kind() != "NoneType":
|
|
assert scale_ctype.kind() == "ListType"
|
|
assert scale_ctype.getElementType().kind() == "FloatType"
|
|
assert size_ctype.kind() == "NoneType"
|
|
assert size_arg is None
|
|
assert isinstance(scale_arg, list)
|
|
assert scale_arg
|
|
assert all(isinstance(val, float) for val in scale_arg)
|
|
if len(scale_arg) == 1:
|
|
scale_arg = scale_arg * 2
|
|
assert len(scale_arg) == 2
|
|
out_h = int(scale_arg[0] * image_oper.shape[2])
|
|
out_w = int(scale_arg[1] * image_oper.shape[3])
|
|
arg_h = self.add_immediate_float_scalar(scale_arg[0])
|
|
arg_w = self.add_immediate_float_scalar(scale_arg[1])
|
|
else:
|
|
raise Exception("Size and scale cannot both be None.")
|
|
|
|
out_shape = (image_oper.shape[0], image_oper.shape[1], out_h, out_w)
|
|
use_nchw = image_oper.use_nchw()
|
|
|
|
inputs = [None] * 4
|
|
inputs[0] = image_id
|
|
inputs[1] = arg_w
|
|
inputs[2] = arg_h
|
|
inputs[3] = self.add_immediate_bool_scalar(use_nchw)
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), image_oper._replace(shape=out_shape))
|
|
|
|
self.add_operation(NNAPI_OperationCode.RESIZE_NEAREST_NEIGHBOR, inputs, outputs)
|
|
|
|
def add_addmm(self, node):
|
|
assert node.inputsSize() == 5
|
|
assert node.outputsSize() == 1
|
|
jit_bias, jit_input, jit_weight, jit_beta, jit_alpha = node.inputs()
|
|
|
|
for jitval in (jit_beta, jit_alpha):
|
|
scale_ctype, scale_value = self.get_constant_value(jitval)
|
|
assert scale_ctype.kind() in ("IntType", "FloatType")
|
|
if scale_value != 1:
|
|
raise Exception("NNAPI Fully-Connected does not support alpha and beta.")
|
|
|
|
self.add_addmm_or_linear(node, True, jit_input, jit_weight, jit_bias)
|
|
|
|
def add_linear(self, node):
|
|
assert node.inputsSize() == 3
|
|
assert node.outputsSize() == 1
|
|
jit_input, jit_weight, jit_bias = node.inputs()
|
|
|
|
self.add_addmm_or_linear(node, False, jit_input, jit_weight, jit_bias)
|
|
|
|
def add_addmm_or_linear(self, node, transpose_weight, jit_input, jit_weight, jit_bias):
|
|
input_id, input_oper = self.get_tensor_operand_by_jitval_fixed_size(jit_input)
|
|
bias_id, bias_oper = self.get_tensor_operand_for_weight(jit_bias)
|
|
|
|
assert len(input_oper.shape) == 2
|
|
assert len(bias_oper.shape) == 1
|
|
|
|
# TODO: Transform at load time to share weights with CPU model.
|
|
_, weight_tensor = self.get_constant_value(jit_weight, "TensorType")
|
|
assert len(weight_tensor.shape) == 2
|
|
if transpose_weight:
|
|
nnapi_weight_tensor = weight_tensor.t().contiguous()
|
|
else:
|
|
nnapi_weight_tensor = weight_tensor.contiguous()
|
|
weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor)
|
|
weight_oper = self.operands[weight_id]
|
|
|
|
out_shape = (input_oper.shape[0], weight_oper.shape[0])
|
|
|
|
inputs = [None] * 4
|
|
inputs[0] = input_id
|
|
inputs[1] = weight_id
|
|
inputs[2] = bias_id
|
|
inputs[3] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), input_oper._replace(shape=out_shape))
|
|
|
|
self.add_operation(NNAPI_OperationCode.FULLY_CONNECTED, inputs, outputs)
|
|
|
|
def add_qlinear(self, node):
|
|
assert node.inputsSize() == 4
|
|
assert node.outputsSize() == 1
|
|
(
|
|
jit_input,
|
|
jit_packed_weight,
|
|
jit_scale,
|
|
jit_zero_point,
|
|
) = node.inputs()
|
|
|
|
input_id, input_oper = self.get_tensor_operand_by_jitval_fixed_size(jit_input)
|
|
# TODO: Support automatic reshape
|
|
assert len(input_oper.shape) == 2
|
|
|
|
_, out_scale = self.get_constant_value(jit_scale, "FloatType")
|
|
_, out_zero_point = self.get_constant_value(jit_zero_point, "IntType")
|
|
weight_ctype, packed_weight = self.get_constant_value(jit_packed_weight)
|
|
assert weight_ctype.name() == "LinearPackedParamsBase"
|
|
raw_weight, raw_bias = packed_weight.__getstate__()[0]
|
|
assert raw_bias is not None
|
|
|
|
assert len(raw_weight.shape) == 2
|
|
assert len(raw_bias.shape) == 1
|
|
assert raw_bias.shape[0] == raw_weight.shape[0]
|
|
assert raw_weight.shape[1] == input_oper.shape[1]
|
|
|
|
assert raw_weight.qscheme() == torch.per_tensor_affine
|
|
if raw_weight.dtype == torch.quint8:
|
|
unsigned_weight = raw_weight
|
|
else:
|
|
assert raw_weight.dtype == torch.qint8
|
|
unsigned_weight = torch._make_per_tensor_quantized_tensor(
|
|
(raw_weight.int_repr().int() + 128).to(torch.uint8),
|
|
scale=raw_weight.q_scale(),
|
|
zero_point=raw_weight.q_zero_point() + 128)
|
|
weight_scale = unsigned_weight.q_scale()
|
|
bias_scale = input_oper.scale * weight_scale
|
|
int_bias = torch.quantize_per_tensor(raw_bias, bias_scale, 0, torch.qint32)
|
|
bias_id = self.add_tensor_operand_for_weight(int_bias)
|
|
|
|
multiplier = input_oper.scale * weight_scale / out_scale
|
|
assert multiplier > 0
|
|
if multiplier >= 1:
|
|
raise Exception(
|
|
"Quantized convolution multiplier is greater than 1. "
|
|
"This is supported by NNAPI, but not by most hardware backends. "
|
|
"Try training a model without quantization-aware training. ")
|
|
|
|
# TODO: Transform at load time to share weights with CPU model.
|
|
nnapi_weight_tensor = unsigned_weight.contiguous()
|
|
weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor)
|
|
weight_oper = self.operands[weight_id]
|
|
|
|
out_shape = (input_oper.shape[0], weight_oper.shape[0])
|
|
out_oper = input_oper._replace(
|
|
shape=out_shape,
|
|
scale=out_scale,
|
|
zero_point=out_zero_point,
|
|
)
|
|
|
|
inputs = [None] * 4
|
|
inputs[0] = input_id
|
|
inputs[1] = weight_id
|
|
inputs[2] = bias_id
|
|
inputs[3] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
|
|
|
|
self.add_operation(NNAPI_OperationCode.FULLY_CONNECTED, inputs, outputs)
|
|
|
|
def get_optional_bias(self, jit_bias, weight_tensor):
|
|
ctype, value = self.get_constant_value(jit_bias)
|
|
if ctype.kind() == "NoneType":
|
|
nnapi_bias_tensor = torch.zeros(weight_tensor.size()[0], dtype=weight_tensor.dtype)
|
|
bias_id = self.add_tensor_operand_for_weight(nnapi_bias_tensor)
|
|
bias_oper = self.operands[bias_id]
|
|
return bias_id, bias_oper
|
|
else:
|
|
return self.get_tensor_operand_for_weight(jit_bias)
|
|
|
|
def add_conv2d(self, node):
|
|
assert node.inputsSize() == 7
|
|
assert node.outputsSize() == 1
|
|
|
|
(
|
|
jit_image,
|
|
jit_weight,
|
|
jit_bias,
|
|
jit_stride,
|
|
jit_pad,
|
|
jit_dilation,
|
|
jit_groups,
|
|
) = node.inputs()
|
|
|
|
_, weight_tensor = self.get_constant_value(jit_weight, "TensorType")
|
|
bias_id, bias_oper = self.get_optional_bias(jit_bias, weight_tensor)
|
|
args = self.get_conv_pool_args_2d_from_jit(
|
|
weight_tensor.shape[2:4], jit_stride, jit_pad, jit_dilation, jit_groups)
|
|
|
|
return self.add_conv2d_common(
|
|
node.outputsAt(0),
|
|
0.0,
|
|
0,
|
|
jit_image,
|
|
weight_tensor,
|
|
bias_id,
|
|
args,
|
|
False, # transpose
|
|
NNAPI_FuseCode.FUSED_NONE,
|
|
)
|
|
|
|
def add_conv_underscore(self, node):
|
|
assert node.inputsSize() == 13
|
|
assert node.outputsSize() == 1
|
|
|
|
(
|
|
jit_image,
|
|
jit_weight,
|
|
jit_bias,
|
|
jit_stride,
|
|
jit_pad,
|
|
jit_dilation,
|
|
jit_transpose,
|
|
_,
|
|
jit_groups,
|
|
_,
|
|
_,
|
|
_,
|
|
_,
|
|
) = node.inputs()
|
|
|
|
# XXX check jit_transpose
|
|
|
|
_, weight_tensor = self.get_constant_value(jit_weight, "TensorType")
|
|
bias_id, bias_oper = self.get_optional_bias(jit_bias, weight_tensor)
|
|
args = self.get_conv_pool_args_2d_from_jit(
|
|
weight_tensor.shape[2:4], jit_stride, jit_pad, jit_dilation, jit_groups)
|
|
|
|
return self.add_conv2d_common(
|
|
node.outputsAt(0),
|
|
0.0,
|
|
0,
|
|
jit_image,
|
|
weight_tensor,
|
|
bias_id,
|
|
args,
|
|
False, # transpose
|
|
NNAPI_FuseCode.FUSED_NONE,
|
|
)
|
|
|
|
def add_qconv2d(self, node, fuse_code):
|
|
assert node.inputsSize() == 4
|
|
assert node.outputsSize() == 1
|
|
|
|
(
|
|
jit_image,
|
|
jit_packed_weight,
|
|
jit_scale,
|
|
jit_zero_point,
|
|
) = node.inputs()
|
|
|
|
_, out_scale = self.get_constant_value(jit_scale, "FloatType")
|
|
_, out_zero_point = self.get_constant_value(jit_zero_point, "IntType")
|
|
weight_ctype, packed_weight = self.get_constant_value(jit_packed_weight)
|
|
assert weight_ctype.name() == "Conv2dPackedParamsBase"
|
|
(
|
|
pack_version,
|
|
tensors,
|
|
opt_tensors,
|
|
) = packed_weight.__getstate__()[0]
|
|
assert pack_version == "2"
|
|
packed_config, raw_weight = tensors
|
|
raw_bias, = opt_tensors
|
|
assert raw_bias is not None
|
|
args = self.get_conv_pool_args_2d_from_pack(raw_weight.shape[2:4], packed_config)
|
|
|
|
assert raw_weight.qscheme() == torch.per_tensor_affine
|
|
if raw_weight.dtype == torch.quint8:
|
|
unsigned_weight = raw_weight
|
|
else:
|
|
assert raw_weight.dtype == torch.qint8
|
|
unsigned_weight = torch._make_per_tensor_quantized_tensor(
|
|
(raw_weight.int_repr().int() + 128).to(torch.uint8),
|
|
scale=raw_weight.q_scale(),
|
|
zero_point=raw_weight.q_zero_point() + 128)
|
|
weight_scale = unsigned_weight.q_scale()
|
|
_, image_oper = self.get_tensor_operand_by_jitval_fixed_size(jit_image)
|
|
bias_scale = image_oper.scale * weight_scale
|
|
int_bias = torch.quantize_per_tensor(raw_bias, bias_scale, 0, torch.qint32)
|
|
bias_id = self.add_tensor_operand_for_weight(int_bias)
|
|
|
|
multiplier = image_oper.scale * weight_scale / out_scale
|
|
assert multiplier > 0
|
|
if multiplier >= 1:
|
|
raise Exception(
|
|
"Quantized convolution multiplier is greater than 1. "
|
|
"This is supported by NNAPI, but not by most hardware backends. "
|
|
"Try training a model without quantization-aware training. ")
|
|
|
|
return self.add_conv2d_common(
|
|
node.outputsAt(0),
|
|
out_scale,
|
|
out_zero_point,
|
|
jit_image,
|
|
unsigned_weight,
|
|
bias_id,
|
|
args,
|
|
False, # transpose
|
|
fuse_code,
|
|
)
|
|
|
|
def add_conv2d_common(
|
|
self,
|
|
jit_out,
|
|
out_scale,
|
|
out_zero_point,
|
|
jit_image,
|
|
weight_tensor,
|
|
bias_id,
|
|
args,
|
|
transpose,
|
|
fuse_code):
|
|
image_id, image_oper = self.get_tensor_operand_by_jitval_fixed_size(jit_image)
|
|
in_c = image_oper.shape[1]
|
|
|
|
if args.group == 1:
|
|
# Full convolution
|
|
depthwise = False
|
|
weight_permutation = (0, 2, 3, 1)
|
|
elif args.group == in_c:
|
|
# Depthwise convolution
|
|
depthwise = True
|
|
weight_permutation = (1, 2, 3, 0)
|
|
else:
|
|
raise Exception("Group convolution not supported yet.")
|
|
|
|
# TODO: Transform at load time to share weights with CPU model.
|
|
nnapi_weight_tensor = weight_tensor.permute(*weight_permutation).contiguous()
|
|
weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor)
|
|
weight_oper = self.operands[weight_id]
|
|
|
|
bias_oper = self.operands[bias_id]
|
|
|
|
if image_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32:
|
|
assert weight_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32
|
|
assert bias_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32
|
|
elif image_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM:
|
|
assert weight_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM
|
|
assert bias_oper.op_type == NNAPI_OperandCode.TENSOR_INT32
|
|
assert approx_equal(image_oper.scale * weight_oper.scale, bias_oper.scale)
|
|
assert bias_oper.zero_point == 0
|
|
else:
|
|
raise Exception(
|
|
"Unsupported input type for conv2d: {}"
|
|
.format(image_oper.op_type))
|
|
|
|
assert len(image_oper.shape) == 4
|
|
assert len(weight_oper.shape) == 4
|
|
assert len(bias_oper.shape) == 1
|
|
|
|
if depthwise:
|
|
# Depthwise convolution
|
|
one, kern_h, kern_w, out_c = weight_oper.shape
|
|
assert one == 1
|
|
assert out_c % in_c == 0
|
|
channel_multiplier = out_c // in_c
|
|
assert channel_multiplier == 1 # Don't support multiplier
|
|
assert out_c == in_c
|
|
else:
|
|
# Full convolution
|
|
kern_nf, kern_h, kern_w, kern_d = weight_oper.shape
|
|
out_c = kern_nf
|
|
assert kern_d == in_c
|
|
|
|
assert out_c == bias_oper.shape[0]
|
|
|
|
out_shape = get_conv_pool_shape(image_oper.shape, args, out_c, transpose)
|
|
out_oper = image_oper._replace(
|
|
shape=out_shape,
|
|
scale=out_scale,
|
|
zero_point=out_zero_point,
|
|
)
|
|
|
|
use_nchw = image_oper.use_nchw()
|
|
|
|
if depthwise:
|
|
num_args = 12
|
|
opcode = NNAPI_OperationCode.DEPTHWISE_CONV_2D
|
|
else:
|
|
num_args = 11
|
|
if transpose:
|
|
opcode = NNAPI_OperationCode.TRANSPOSE_CONV_2D
|
|
else:
|
|
opcode = NNAPI_OperationCode.CONV_2D
|
|
|
|
inputs = [None] * num_args
|
|
inputs[0] = image_id
|
|
inputs[1] = weight_id
|
|
inputs[2] = bias_id
|
|
inputs[3] = self.add_immediate_int_scalar(args.pad_l)
|
|
inputs[4] = self.add_immediate_int_scalar(args.pad_r)
|
|
inputs[5] = self.add_immediate_int_scalar(args.pad_t)
|
|
inputs[6] = self.add_immediate_int_scalar(args.pad_b)
|
|
inputs[7] = self.add_immediate_int_scalar(args.stride_w)
|
|
inputs[8] = self.add_immediate_int_scalar(args.stride_h)
|
|
if depthwise:
|
|
inputs[9] = self.add_immediate_int_scalar(1)
|
|
inputs[10] = self.add_immediate_int_scalar(fuse_code)
|
|
inputs[11] = self.add_immediate_bool_scalar(use_nchw)
|
|
else:
|
|
inputs[9] = self.add_immediate_int_scalar(fuse_code)
|
|
inputs[10] = self.add_immediate_bool_scalar(use_nchw)
|
|
|
|
outputs = [None] * 1
|
|
outputs[0] = self.add_tensor_operand(jit_out, out_oper)
|
|
|
|
self.add_operation(opcode, inputs, outputs)
|
|
|
|
|
|
def serialize_model(module, inputs, config=None):
|
|
return _NnapiSerializer(config).serialize_model(module, inputs)
|