mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
This pr adds a utility to try to try to construct the corresponding real tensor values of fake tensors by seeing if their meta storage is contained in the meta converter. Then, we are able to save real tensor values for fx_graph_runnable if `TORCH_COMPILE_DEBUG_SAVE_REAL=1` is set. Differential Revision: [D64502744](https://our.internmc.facebook.com/intern/diff/D64502744) Pull Request resolved: https://github.com/pytorch/pytorch/pull/138110 Approved by: https://github.com/ezyang
713 lines
23 KiB
Python
713 lines
23 KiB
Python
import collections
|
|
import contextlib
|
|
import dataclasses
|
|
import functools
|
|
import itertools
|
|
import logging
|
|
import os
|
|
import os.path
|
|
import pickle
|
|
import pstats
|
|
import shutil
|
|
import subprocess
|
|
from typing import Any, Callable, Dict, IO, Iterator, List, Optional, Type, Union
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled
|
|
from torch import fx as fx
|
|
from torch._dynamo.repro.after_aot import save_graph_repro
|
|
from torch._dynamo.utils import get_debug_dir
|
|
from torch.fx.graph_module import GraphModule
|
|
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
|
|
from torch.fx.passes.tools_common import legalize_graph
|
|
from torch.utils._pytree import tree_map
|
|
|
|
from . import config, ir # noqa: F811, this is needed
|
|
from .scheduler import (
|
|
BaseSchedulerNode,
|
|
FusedSchedulerNode,
|
|
NopKernelSchedulerNode,
|
|
OutputNode,
|
|
SchedulerNode,
|
|
)
|
|
from .virtualized import V
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
SchedulerNodeList = List[Any]
|
|
BufMeta = collections.namedtuple("BufMeta", ["name", "n_origin"])
|
|
GRAPHVIZ_COMMAND_SCALABLE = ["dot", "-Gnslimit=2", "-Gnslimit1=2", "-Gmaxiter=5000"]
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def has_dot() -> bool:
|
|
try:
|
|
subprocess.check_output(["which", "dot"], stderr=subprocess.PIPE)
|
|
return True
|
|
except subprocess.SubprocessError:
|
|
return False
|
|
|
|
|
|
def draw_buffers(
|
|
nodes: List[BaseSchedulerNode],
|
|
print_graph: bool = False,
|
|
fname: Optional[str] = None,
|
|
) -> None:
|
|
"""
|
|
Draw a graph in fname.svg.
|
|
"""
|
|
if not has_dot():
|
|
log.warning("draw_buffers() requires `graphviz` package")
|
|
return
|
|
|
|
if fname is None:
|
|
fname = get_graph_being_compiled()
|
|
|
|
graph = create_fx_from_snodes(nodes)
|
|
|
|
for node in graph.nodes:
|
|
if "fusion_meta" not in node.meta:
|
|
continue
|
|
group = node.meta["fusion_meta"].group
|
|
if isinstance(group, tuple):
|
|
if isinstance(group[1], int):
|
|
group = (group[1],)
|
|
else:
|
|
group = group[1]
|
|
|
|
# gather meta data
|
|
dtype = None
|
|
if isinstance(node, ir.ComputedBuffer):
|
|
dtype = node.data.dtype
|
|
|
|
metadata = TensorMetadata(group, dtype, None, None, None, None, None) # type: ignore[arg-type]
|
|
node.meta["tensor_meta"] = metadata
|
|
|
|
if print_graph:
|
|
print(graph)
|
|
|
|
gm = GraphModule({}, graph)
|
|
legalize_graph(gm)
|
|
gm.graph.lint()
|
|
draw_graph(
|
|
gm, fname, clear_meta=False, dot_graph_shape=config.trace.dot_graph_shape
|
|
)
|
|
|
|
|
|
def create_fx_from_snodes(snodes: List[BaseSchedulerNode]) -> fx.Graph:
|
|
"""
|
|
Creates a FX Graph from a list of SchedulerNode objects.
|
|
"""
|
|
|
|
def get_fake_func(name: str) -> Callable[..., int]:
|
|
def func1(*args: Any) -> int:
|
|
return 0
|
|
|
|
func1.__name__ = name
|
|
return func1
|
|
|
|
FusionMeta = collections.namedtuple("FusionMeta", ["group", "snode", "type"])
|
|
|
|
buf_to_fx_node = {}
|
|
node_to_fx_node = {}
|
|
graph = torch.fx.Graph()
|
|
first_node = None
|
|
|
|
outputs = []
|
|
group: Any = None
|
|
# create call_function node for each Buffer and Kernel
|
|
for snode in snodes:
|
|
if snode.is_extern():
|
|
node_type = "extern"
|
|
group = node_type
|
|
elif snode.is_template():
|
|
node_type = "template"
|
|
group = node_type
|
|
elif isinstance(snode, NopKernelSchedulerNode):
|
|
node_type = "nop"
|
|
group = node_type
|
|
elif isinstance(snode, SchedulerNode):
|
|
node_type = "compute"
|
|
group = snode.group
|
|
elif isinstance(snode, FusedSchedulerNode):
|
|
node_type = "fused"
|
|
group = snode.group
|
|
else:
|
|
raise RuntimeError("Unknown node type")
|
|
|
|
fused_name = torch._inductor.utils.get_fused_kernel_name(
|
|
snode.get_nodes(), "original_aten"
|
|
)
|
|
func_name = f"{node_type}: {fused_name}"
|
|
node_func = get_fake_func(func_name)
|
|
kwargs = {}
|
|
if hasattr(snode, "get_device"):
|
|
kwargs = {"device": snode.get_device()}
|
|
fx_node = graph.call_function(node_func, args=(), kwargs=kwargs) # type: ignore[arg-type]
|
|
|
|
def in_output(snode: Union[BaseSchedulerNode, FusedSchedulerNode]) -> bool:
|
|
if isinstance(snode, FusedSchedulerNode):
|
|
return any(in_output(x) for x in snode.snodes)
|
|
return any(
|
|
isinstance(user.node, OutputNode)
|
|
for buf in snode.get_outputs()
|
|
for user in buf.users
|
|
)
|
|
|
|
if in_output(snode):
|
|
outputs.append(fx_node)
|
|
name = snode.get_name()
|
|
fx_node.name = name
|
|
|
|
fx_node.meta["fusion_meta"] = FusionMeta(group, snode, node_type)
|
|
|
|
node_to_fx_node[name] = fx_node
|
|
for buf in snode.get_outputs():
|
|
buf_to_fx_node[buf.get_name()] = fx_node
|
|
|
|
if first_node is None:
|
|
first_node = fx_node
|
|
|
|
# create edges between nodes
|
|
for snode in snodes:
|
|
name = snode.get_name()
|
|
deps = snode.read_writes.reads
|
|
|
|
fx_node = node_to_fx_node[name]
|
|
new_args = []
|
|
for dep in deps:
|
|
if dep.name in buf_to_fx_node:
|
|
dep_node = buf_to_fx_node[dep.name]
|
|
else:
|
|
with graph.inserting_before(first_node):
|
|
dep_node = graph.placeholder(dep.name)
|
|
buf_to_fx_node[dep.name] = dep_node
|
|
if dep_node == fx_node: # to avoid cycles
|
|
continue
|
|
new_args.append(dep_node)
|
|
|
|
fx_node.args = tuple(new_args)
|
|
|
|
graph.output(outputs[0] if len(outputs) == 1 else tuple(outputs))
|
|
return graph
|
|
|
|
|
|
def update_orig_fx_node_name_to_buf_name(
|
|
nodes: Optional[SchedulerNodeList],
|
|
node_name_to_buf_name: Dict[str, str],
|
|
parent_buf_name: Optional[str] = None,
|
|
n_origins: int = 0,
|
|
) -> None:
|
|
if nodes is None:
|
|
return
|
|
for node in nodes:
|
|
# for FusedSchedulerNode, traverse recursively into get_nodes()
|
|
buf_name = node.get_name()
|
|
children_nodes = node.get_nodes()
|
|
if children_nodes is not None and len(children_nodes) > 1:
|
|
update_orig_fx_node_name_to_buf_name(
|
|
children_nodes,
|
|
node_name_to_buf_name,
|
|
buf_name if parent_buf_name is None else parent_buf_name,
|
|
)
|
|
continue
|
|
else:
|
|
assert len(children_nodes) == 1 and children_nodes[0] == node
|
|
|
|
ir_node = node.node
|
|
if ir_node is None or ir_node.origins is None:
|
|
continue
|
|
for origin in ir_node.origins:
|
|
node_name = origin.name
|
|
# when buf1 and buf2 both have origin=node1
|
|
# we draw node1 according to buf1
|
|
if node_name not in node_name_to_buf_name:
|
|
node_name_to_buf_name[node_name] = (
|
|
buf_name if parent_buf_name is None else parent_buf_name
|
|
)
|
|
|
|
|
|
def get_node_name_to_buf_meta(
|
|
node_name_to_buf_name: Dict[str, str]
|
|
) -> Dict[str, BufMeta]:
|
|
buf_name_to_n_node = {}
|
|
for node_name, buf_name in node_name_to_buf_name.items():
|
|
if buf_name not in buf_name_to_n_node:
|
|
buf_name_to_n_node[buf_name] = {node_name}
|
|
else:
|
|
buf_name_to_n_node[buf_name].add(node_name)
|
|
|
|
node_name_to_buf_meta = {}
|
|
for node_name, buf_name in node_name_to_buf_name.items():
|
|
n_node = len(buf_name_to_n_node[buf_name])
|
|
node_name_to_buf_meta[node_name] = BufMeta(buf_name, n_node)
|
|
return node_name_to_buf_meta
|
|
|
|
|
|
def annotate_orig_fx_with_snodes(
|
|
gm: torch.fx.GraphModule,
|
|
snodes: SchedulerNodeList,
|
|
) -> None:
|
|
"""
|
|
Creates a FX Graph from a list of SchedulerNode objects.
|
|
"""
|
|
node_name_to_buf_name: Dict[str, str] = {}
|
|
update_orig_fx_node_name_to_buf_name(snodes, node_name_to_buf_name)
|
|
if node_name_to_buf_name is None:
|
|
return
|
|
node_name_to_buf_meta = get_node_name_to_buf_meta(node_name_to_buf_name)
|
|
for node in gm.graph.nodes:
|
|
if node.name in node_name_to_buf_meta:
|
|
node.meta["buf_meta"] = node_name_to_buf_meta.get(node.name)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def enable_aot_logging() -> Iterator[None]:
|
|
compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
|
|
|
|
import torch._functorch.aot_autograd
|
|
|
|
log = logging.getLogger(torch._functorch.aot_autograd.__name__)
|
|
|
|
stack = contextlib.ExitStack()
|
|
if not compile_debug:
|
|
try:
|
|
yield
|
|
finally:
|
|
stack.close()
|
|
return
|
|
|
|
# Enable all graphs to be logged to a file by setting the flags to True
|
|
# and the log level of the file logger to DEBUG
|
|
stack.enter_context(patch("functorch.compile.config.debug_partitioner", True))
|
|
|
|
path = os.path.join(get_debug_dir(), "torchinductor")
|
|
os.makedirs(path, exist_ok=True)
|
|
|
|
fh = logging.FileHandler(
|
|
os.path.join(
|
|
path,
|
|
f"aot_{get_aot_graph_name()}_debug.log",
|
|
)
|
|
)
|
|
fh.setLevel(logging.DEBUG)
|
|
fh.setFormatter(
|
|
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
|
|
)
|
|
log.addHandler(fh)
|
|
try:
|
|
yield
|
|
finally:
|
|
log.removeHandler(fh)
|
|
stack.close()
|
|
|
|
|
|
class DebugContext:
|
|
_counter = itertools.count()
|
|
|
|
@staticmethod
|
|
def create_debug_dir(folder_name: str) -> Optional[str]:
|
|
debug_dir = config.trace.debug_dir or get_debug_dir()
|
|
for n in DebugContext._counter:
|
|
dirname = os.path.join(
|
|
debug_dir,
|
|
"torchinductor",
|
|
f"{folder_name}.{n}",
|
|
)
|
|
if not os.path.exists(dirname):
|
|
os.makedirs(dirname)
|
|
return dirname
|
|
return None
|
|
|
|
def __init__(self) -> None:
|
|
self._prof = None
|
|
self._path = None
|
|
self._stack = contextlib.ExitStack()
|
|
|
|
def copy(self, new_path: str) -> None:
|
|
if not self._path:
|
|
return
|
|
assert new_path.endswith(".debug"), new_path
|
|
from filelock import FileLock
|
|
|
|
try:
|
|
with FileLock(f"{new_path}.lock"):
|
|
if os.path.exists(new_path):
|
|
shutil.rmtree(new_path)
|
|
shutil.copytree(self._path, new_path)
|
|
except OSError:
|
|
log.warning(
|
|
"Failed to copy debug files from %s to %s", self._path, new_path
|
|
)
|
|
|
|
def fopen(
|
|
self,
|
|
filename: str,
|
|
write_mode: str = "w",
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> IO[Any]:
|
|
assert self._path
|
|
return open(os.path.join(self._path, filename), write_mode, *args, **kwargs)
|
|
|
|
@contextlib.contextmanager
|
|
def fopen_context(
|
|
self,
|
|
filename: str,
|
|
write_mode: str = "w",
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Iterator[IO[Any]]:
|
|
assert self._path
|
|
with open(os.path.join(self._path, filename), write_mode, *args, **kwargs) as f:
|
|
yield f
|
|
|
|
def filename(self, suffix: str) -> str:
|
|
assert self._path
|
|
return os.path.join(self._path, suffix)
|
|
|
|
def upload_tar(self) -> None:
|
|
if config.trace.upload_tar is not None:
|
|
import tarfile
|
|
|
|
assert self._path
|
|
tar_file = os.path.join(
|
|
self._path, f"{os.path.basename(self._path)}.tar.gz"
|
|
)
|
|
with tarfile.open(tar_file, "w:gz") as tar:
|
|
tar.add(self._path, arcname=os.path.basename(self._path))
|
|
config.trace.upload_tar(tar_file)
|
|
|
|
def __enter__(self) -> None:
|
|
if config.debug:
|
|
log = logging.getLogger("torch._dynamo")
|
|
prev_level = log.level
|
|
log.setLevel(logging.DEBUG)
|
|
|
|
def reset_log_level(level: Any) -> None:
|
|
log.setLevel(level)
|
|
|
|
self._stack.callback(reset_log_level, prev_level)
|
|
|
|
self._stack.enter_context(V.set_debug_handler(self))
|
|
|
|
if not config.trace.enabled:
|
|
return
|
|
|
|
self._path = self.create_debug_dir(get_aot_graph_name()) # type: ignore[assignment]
|
|
|
|
if config.trace.debug_log:
|
|
self._setup_log_capture("debug.log", logging.DEBUG)
|
|
if config.trace.info_log:
|
|
self._setup_log_capture("info.log", logging.INFO)
|
|
|
|
def _setup_log_capture(
|
|
self,
|
|
filename: str,
|
|
level: int,
|
|
) -> None:
|
|
log = logging.getLogger("torch._inductor")
|
|
fd = self._stack.enter_context(self.fopen(filename))
|
|
ch = logging.StreamHandler(fd)
|
|
ch.setLevel(level)
|
|
ch.setFormatter(
|
|
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
|
|
)
|
|
log.addHandler(ch)
|
|
log.setLevel(min(log.level, level))
|
|
self._stack.callback(log.removeHandler, ch)
|
|
|
|
def __exit__(
|
|
self,
|
|
exc_type: Optional[Type[BaseException]],
|
|
exc_val: Optional[BaseException],
|
|
exc_tb: Optional[Any],
|
|
) -> None:
|
|
if self._prof:
|
|
self._prof.disable()
|
|
self._save_profile_data()
|
|
|
|
if self._path:
|
|
self.upload_tar()
|
|
log.warning("%s debug trace: %s", get_graph_being_compiled(), self._path)
|
|
self._stack.close()
|
|
|
|
def _save_profile_data(self) -> None:
|
|
assert self._prof
|
|
self._prof.dump_stats(self.filename("compile.prof"))
|
|
with self.fopen("compile.stats") as fd:
|
|
stats = pstats.Stats(self._prof, stream=fd)
|
|
stats.strip_dirs()
|
|
stats.sort_stats("cumtime")
|
|
stats.print_stats(100)
|
|
stats.sort_stats("tottime")
|
|
stats.print_stats(100)
|
|
|
|
def __getattr__(self, name: str) -> Optional[Callable[..., None]]:
|
|
if config.trace.enabled and getattr(config.trace, name):
|
|
try:
|
|
return getattr(DebugFormatter(self), name)
|
|
except Exception:
|
|
log.warning("Ignoring exception in debug code", exc_info=True)
|
|
return None
|
|
else:
|
|
|
|
def ignored(*args: Any, **kwargs: Any) -> None:
|
|
pass
|
|
|
|
return ignored
|
|
|
|
|
|
class DebugFormatter:
|
|
def __init__(self, handler: DebugContext) -> None:
|
|
self.fopen = handler.fopen
|
|
self.fopen_context = handler.fopen_context
|
|
self.filename = handler.filename
|
|
self.handler = handler
|
|
|
|
def fx_graph(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
inputs: List[torch.Tensor],
|
|
) -> None:
|
|
with self.fopen("fx_graph_runnable.py") as fd:
|
|
save_dir = None
|
|
if torch._inductor.config.trace.save_real_tensors:
|
|
inputs = torch._subclasses.fake_utils.try_convert_fake_to_real(inputs)
|
|
save_dir = os.path.dirname(fd.name)
|
|
|
|
# dont try to use stable hash torchinductor compilation if saving real tensors
|
|
# and avoid recursively trying to save real tensors inside of the inductor compilation
|
|
# regardless
|
|
stable_hash = torch._inductor.config.trace.save_real_tensors
|
|
with torch._inductor.config.patch(
|
|
{"trace.enabled": False, "trace.save_real_tensors": False}
|
|
):
|
|
save_graph_repro(
|
|
fd,
|
|
gm,
|
|
inputs,
|
|
"inductor",
|
|
save_dir=save_dir,
|
|
stable_hash=stable_hash,
|
|
)
|
|
|
|
with self.fopen("fx_graph_readable.py") as fd:
|
|
fd.write(gm.print_readable(print_output=False))
|
|
|
|
def fx_graph_transformed(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
inputs: List[torch.Tensor],
|
|
) -> None:
|
|
with self.fopen("fx_graph_transformed.py") as fd:
|
|
fd.write(gm.print_readable(print_output=False))
|
|
|
|
def ir_pre_fusion(self, nodes: SchedulerNodeList) -> None:
|
|
self._write_ir("ir_pre_fusion.txt", nodes)
|
|
|
|
def ir_post_fusion(self, nodes: SchedulerNodeList) -> None:
|
|
self._write_ir("ir_post_fusion.txt", nodes)
|
|
|
|
def _write_ir(
|
|
self,
|
|
filename: str,
|
|
nodes: SchedulerNodeList,
|
|
) -> None:
|
|
with self.fopen(filename) as fd:
|
|
log.info("Writing debug ir to %s", fd.name)
|
|
for node in nodes:
|
|
fd.write(node.debug_str())
|
|
fd.write("\n\n\n")
|
|
|
|
def graph_diagram(self, nodes: SchedulerNodeList) -> None:
|
|
draw_buffers(nodes, fname=self.filename("graph_diagram.svg"))
|
|
|
|
def draw_orig_fx_graph(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
nodes: SchedulerNodeList,
|
|
) -> None:
|
|
annotate_orig_fx_with_snodes(gm, nodes)
|
|
draw_graph(
|
|
gm,
|
|
fname=self.filename("orig_fx_graph_diagram.svg"),
|
|
clear_meta=False,
|
|
prog=GRAPHVIZ_COMMAND_SCALABLE,
|
|
parse_stack_trace=True,
|
|
dot_graph_shape=config.trace.dot_graph_shape,
|
|
)
|
|
|
|
def output_code(self, filename: str) -> None:
|
|
shutil.copy(filename, self.filename("output_code.py"))
|
|
|
|
def log_autotuning_results(
|
|
self,
|
|
name: str,
|
|
input_nodes: List[ir.IRNode],
|
|
timings: Dict["ChoiceCaller", float], # type: ignore[name-defined] # noqa: F821
|
|
elapse: float,
|
|
precompile_elapse: float,
|
|
) -> None:
|
|
import json
|
|
|
|
from .ir import FixedLayout
|
|
|
|
def build_node_info(node: ir.IRNode) -> Dict[str, str]:
|
|
if hasattr(node, "name"):
|
|
node_name = node.name
|
|
else:
|
|
node_name = ""
|
|
node_info = {
|
|
"name": node_name,
|
|
"type": type(node).__name__,
|
|
}
|
|
try:
|
|
layout = node.get_layout()
|
|
if isinstance(layout, FixedLayout):
|
|
offset = 0
|
|
try:
|
|
offset = int(layout.offset)
|
|
except Exception:
|
|
try:
|
|
offset = V.graph.sizevars.size_hint(
|
|
layout.offset, fallback=0
|
|
)
|
|
except Exception:
|
|
pass
|
|
static_layout = FixedLayout(
|
|
layout.device,
|
|
dtype=layout.dtype,
|
|
size=list(V.graph.sizevars.size_hints(layout.size)),
|
|
stride=list(V.graph.sizevars.size_hints(layout.stride)),
|
|
offset=offset,
|
|
)
|
|
node_info["layout"] = str(static_layout)
|
|
else:
|
|
node_info["layout"] = str(node.get_layout())
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
node_info["dtype"] = str(node.get_dtype())
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
node_info["device"] = str(node.get_device())
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
node_info["stride"] = str(
|
|
V.graph.sizevars.size_hints(node.get_stride())
|
|
)
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
node_info["size"] = str(V.graph.sizevars.size_hints(node.get_size()))
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
node_info["numel"] = str(V.graph.sizevars.size_hint(node.get_numel()))
|
|
except Exception as e:
|
|
pass
|
|
if hasattr(node, "data") and isinstance(node.data, ir.IRNode):
|
|
node_info["data"] = build_node_info(node.data)
|
|
return node_info
|
|
|
|
general_properties = {
|
|
"op_name": name,
|
|
"cuda_device_name": torch.cuda.get_device_name(),
|
|
"cuda_device_count": torch.cuda.device_count(),
|
|
"input_nodes": [build_node_info(node) for node in input_nodes],
|
|
"autotuning_time": elapse,
|
|
"precompile_time": precompile_elapse,
|
|
}
|
|
with self.fopen_context(
|
|
"autotuning_result_json_list.txt", "at", encoding="utf-8"
|
|
) as fd:
|
|
for caller, time in timings.items():
|
|
info_dict = dict(caller.info_dict())
|
|
info_dict.update(general_properties)
|
|
info_dict["benchmark_result"] = time
|
|
json.dump(info_dict, fd)
|
|
fd.write("\n")
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class TensorMetadataHolder:
|
|
tensor_metadata: TensorMetadata
|
|
device: torch.device
|
|
|
|
|
|
save_args_cnt = itertools.count()
|
|
|
|
|
|
def save_args_for_compile_fx_inner(*args: Any, **kwargs: Any) -> None:
|
|
"""
|
|
This function is used to save arguments for a compile_fx_inner function call
|
|
to the file system. Later on one can replay the compile_fx_inner call
|
|
with the saved arguments using load_args_and_run_compile_fx_inner.
|
|
"""
|
|
|
|
folder = "/tmp/inductor_saved_args"
|
|
if not os.path.exists(folder):
|
|
os.mkdir(folder)
|
|
|
|
def handle_tensor(x: Any) -> Any:
|
|
"""
|
|
Pickle FakeTensor will result in error:
|
|
AttributeError: Can't pickle local object 'WeakValueDictionary.__init__.<locals>.remove'
|
|
|
|
Convert all Tensor to metadata. This may also makes pickle faster.
|
|
"""
|
|
if isinstance(x, torch.Tensor):
|
|
return TensorMetadataHolder(_extract_tensor_metadata(x), x.device)
|
|
else:
|
|
return x
|
|
|
|
args_to_save, kwargs_to_save = tree_map(handle_tensor, (args, kwargs))
|
|
|
|
fn_name = "compile_fx_inner"
|
|
path = f"{folder}/{fn_name}_{next(save_args_cnt)}.pkl"
|
|
with open(path, "wb") as f:
|
|
pickle.dump((args_to_save, kwargs_to_save), f)
|
|
|
|
if log.isEnabledFor(logging.DEBUG):
|
|
message = f"""
|
|
Arguments for a compile_fx_inner call is saved to {path}. To replay the call,
|
|
run the following:
|
|
|
|
from torch._inductor.debug import load_args_and_run_compile_fx_inner
|
|
load_args_and_run_compile_fx_inner({path!r})
|
|
"""
|
|
# call print rather than log.debug. log.debug will print message
|
|
# prefix for each line which makes the code snippet harder to be
|
|
# copied.
|
|
# Not a big deal since the code is already been guarded by checking
|
|
# the log level.
|
|
print(message)
|
|
|
|
|
|
def load_args_and_run_compile_fx_inner(path: str) -> Any:
|
|
from torch._inductor.compile_fx import compile_fx_inner
|
|
|
|
with open(path, "rb") as f:
|
|
args, kwargs = pickle.load(f)
|
|
|
|
def handle_tensor(x: Any) -> Any:
|
|
if isinstance(x, TensorMetadataHolder):
|
|
return torch._dynamo.testing.rand_strided(
|
|
x.tensor_metadata.shape,
|
|
x.tensor_metadata.stride,
|
|
x.tensor_metadata.dtype,
|
|
x.device,
|
|
)
|
|
else:
|
|
return x
|
|
|
|
fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
|
|
with fake_mode, config.patch("save_args", False):
|
|
args, kwargs = tree_map(handle_tensor, (args, kwargs))
|
|
return compile_fx_inner(*args, **kwargs)
|