mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This PR is the first change of a series of refactors to the op dispatch logic to: 1. remove the redundant logic in the op dispatch, simplify the error checking 2. reduce the number of tree_map/tree_flatten/unflatten needed to reduce the overhead coming from those operations 3. remove the CachedShardingPropagator by using lru_cache from functools directly, this makes it not only helps TP, but general DTensor operations could be faster! 4. change the view ops behavior by inplace changing the op_schema, which is dangerous for sharding prop caching, model the view op as one type of resharding too 5. enrich output sharding to include whether the op needs redistribute so that we don't need explicit op schema comparison to know it. This should help with further reducing the CPU overhead, benchmark results: before (without this change), aten.addmm latency: 0.476ms  after (with this change), aten.addmm latency: 0.341ms  overall one layer of mlp time reduced from 13.535 -> 9.665ms Apart from overhead reduction, this PR simplifies the op dispatching logic and the resharding logic (more refactor needed to make things more clean, which will be done in later PRs) Pull Request resolved: https://github.com/pytorch/pytorch/pull/107305 Approved by: https://github.com/fduwjj
351 lines
12 KiB
Python
351 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates
|
|
from typing import Dict, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.distributed._tensor.random as random
|
|
from torch.distributed._tensor import (
|
|
DeviceMesh,
|
|
distribute_module,
|
|
distribute_tensor,
|
|
Replicate,
|
|
Shard,
|
|
)
|
|
from torch.distributed._tensor.random import (
|
|
is_rng_supported_mesh,
|
|
TensorParallelRNGTracker,
|
|
)
|
|
from torch.distributed.tensor.parallel._utils import _create_1d_device_mesh
|
|
from torch.distributed.tensor.parallel.style import (
|
|
ColwiseParallel,
|
|
PairwiseParallel,
|
|
ParallelStyle,
|
|
RowwiseParallel,
|
|
)
|
|
|
|
|
|
__all__ = [
|
|
"parallelize_module",
|
|
]
|
|
|
|
|
|
def parallelize_module( # type: ignore[return]
|
|
module: nn.Module,
|
|
device_mesh: DeviceMesh,
|
|
parallelize_plan: Union[ParallelStyle, Dict[str, ParallelStyle]],
|
|
tp_mesh_dim: int = 0,
|
|
) -> nn.Module:
|
|
"""
|
|
The API to apply Tensor Parallelism (TP) in PyTorch. We parallelize module
|
|
or sub_modules based on a parallelize_plan. The parallelize_plan contains
|
|
:class:`ParallelStyle`, which indicates how user wants the module or sub_module
|
|
to be parallelized.
|
|
|
|
User can also specify different parallel style per module fully qualified name (FQN).
|
|
The API supports 2D parallelism natively by accepting an n-dimension device_mesh
|
|
and users just need to specify the dimension where we perform tensor parallelism on.
|
|
|
|
Args:
|
|
module (:class:`nn.Module`):
|
|
Module to be parallelized.
|
|
device_mesh (:class:`DeviceMesh`):
|
|
Object which describes the mesh topology
|
|
of devices for the DTensor.
|
|
parallelize_plan (Union[:class:`ParallelStyle`, Dict[str, :class:`ParallelStyle`]]):
|
|
The plan used to parallelize the module. It can be either a
|
|
:class:`ParallelStyle` object which contains how
|
|
we prepare input/output for Tensor Parallelism or it can be a
|
|
dict of module FQN and its corresponding :class:`ParallelStyle` object.
|
|
tp_mesh_dim (int):
|
|
The dimension of ``device_mesh`` where we perform
|
|
Tensor Parallelism on.
|
|
|
|
Return:
|
|
A :class:`nn.Module` object parallelized.
|
|
|
|
Example::
|
|
>>> # xdoctest: +SKIP("distributed")
|
|
>>> from torch.distributed.tensor.parallel import parallelize_module, PairwiseParallel
|
|
>>>
|
|
>>> # Define the module.
|
|
>>> m = Model(...)
|
|
>>> m = parallelize_module(m, PairwiseParallel())
|
|
>>>
|
|
|
|
.. warning::
|
|
``PairwiseParallel`` comes with constraints for now. If you need finer
|
|
granularity, you need to pass in a dict of module FQN and parallel style instead.
|
|
"""
|
|
|
|
torch._C._log_api_usage_once("torch.distributed.tensor.parallel.parallelize_module")
|
|
|
|
# instantiate a TP RNG state tracker if it's not there
|
|
if (
|
|
is_rng_supported_mesh(device_mesh) and
|
|
not isinstance(random._rng_tracker, TensorParallelRNGTracker)
|
|
):
|
|
random._rng_tracker = TensorParallelRNGTracker(device_mesh.device_type)
|
|
# TODO: we should allow user to pass in the default seed from a config
|
|
random._rng_tracker._manual_seed(device_mesh, base_seed=1234, tp_dim=tp_mesh_dim)
|
|
# By default we execute random ops in non-tensor-parallel region. If users want
|
|
# to execute in tensor-parallel region, they can manually set this field to True
|
|
# after parallelizing the model.
|
|
random._rng_tracker.distribute_region_enabled = False
|
|
|
|
if device_mesh.ndim > 1:
|
|
device_mesh = _create_1d_device_mesh(device_mesh, tp_mesh_dim)
|
|
|
|
if isinstance(parallelize_plan, ParallelStyle):
|
|
# RowwiseParallel or ColwiseParallel
|
|
if isinstance(parallelize_plan, (ColwiseParallel, RowwiseParallel)):
|
|
return _parallelize_linear(module, device_mesh, parallelize_plan)
|
|
# PairwiseParallel
|
|
if _is_mlp_for_pairwise_parallel(module):
|
|
return _parallelize_mlp(module, device_mesh, parallelize_plan)
|
|
else:
|
|
for n, m in module.named_children():
|
|
module.register_module(
|
|
n, parallelize_module(m, device_mesh, parallelize_plan)
|
|
)
|
|
return module
|
|
elif isinstance(parallelize_plan, dict):
|
|
for module_path, parallelize_style in parallelize_plan.items():
|
|
sub_module = module.get_submodule(module_path)
|
|
parent_module = module
|
|
if "." in module_path:
|
|
parent_module_path = ".".join(module_path.split(".")[:-1])
|
|
parent_module = module.get_submodule(parent_module_path)
|
|
module_path = module_path.split(".")[-1]
|
|
parent_module.register_module( # type: ignore[call-arg] # pyre-ignore[20]
|
|
module_path,
|
|
parallelize_module( # type: ignore[arg-type]
|
|
sub_module, device_mesh, parallelize_style # type: ignore[arg-type] # pyre-ignore[6]
|
|
),
|
|
)
|
|
return module
|
|
else:
|
|
raise RuntimeError( # pyre-ignore[7]
|
|
"Expect Union[ParallelStyle, Dict[str, ParallelStyle]] for"
|
|
f" parallelize_plan, {type(parallelize_plan)} found!"
|
|
)
|
|
|
|
|
|
def _is_mlp_for_pairwise_parallel(module: nn.Module) -> bool:
|
|
"""
|
|
Traverse through all the immediate children of the given module and count the
|
|
number of Linear module. If the number is more than one, we return True.
|
|
|
|
Args:
|
|
module (:class:`nn.Module`):
|
|
Module to be traversed and counted.
|
|
|
|
Return:
|
|
A bool which specifies whether the module is MLP supported or not.
|
|
|
|
.. warning::
|
|
The traversal is not recursive for now.
|
|
"""
|
|
linear_submodules = list(
|
|
filter(lambda x: isinstance(x, nn.Linear), module.children())
|
|
)
|
|
return len(linear_submodules) > 1
|
|
|
|
|
|
def _rowwise_parallelize_linear_fn(
|
|
name: str,
|
|
module: nn.Module,
|
|
device_mesh: DeviceMesh,
|
|
) -> None:
|
|
"""
|
|
This function parallelizes the input :class:`nn.Linear` module in
|
|
:class:`RowwiseParallel` style.
|
|
|
|
Args:
|
|
name (str):
|
|
Name of the input module.
|
|
module (:class:`nn.Module`):
|
|
The :class:`nn.Linear` module to be parallelized.
|
|
device_mesh (:class:`DeviceMesh`):
|
|
Object which describes the mesh topology of devices.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
for name, param in module.named_parameters():
|
|
dist_spec = (
|
|
[Shard(1)] if name == "weight" else [Replicate()] # type: ignore[list-item]
|
|
)
|
|
dist_param = torch.nn.Parameter(
|
|
distribute_tensor(param, device_mesh, dist_spec)
|
|
)
|
|
module.register_parameter(name, dist_param)
|
|
|
|
|
|
def _colwise_parallelize_linear_fn(
|
|
name: str,
|
|
module: nn.Module,
|
|
device_mesh: DeviceMesh,
|
|
) -> None:
|
|
"""
|
|
This function parallelizes the input :class:`nn.Linear` module in
|
|
:class:`ColwiseParallel` style.
|
|
|
|
Args:
|
|
name (str):
|
|
Name of the input module.
|
|
module (:class:`nn.Module`):
|
|
The :class:`nn.Linear` module to be parallelized.
|
|
device_mesh (:class:`DeviceMesh`):
|
|
Object which describes the mesh topology of devices.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
for name, param in module.named_parameters():
|
|
dist_param = torch.nn.Parameter(
|
|
distribute_tensor(param, device_mesh, [Shard(0)])
|
|
)
|
|
module.register_parameter(name, dist_param)
|
|
|
|
|
|
def _parallelize_linear(
|
|
module: nn.Module,
|
|
device_mesh: DeviceMesh,
|
|
parallel_style: ParallelStyle = ColwiseParallel(),
|
|
tp_mesh_dim: int = 0,
|
|
) -> nn.Module:
|
|
"""
|
|
This function requires that the input module be an object
|
|
of :class:`nn.Linear`.
|
|
The module will be parallelized over a 1-d :class:`DeviceMesh`
|
|
based on the :class:`ParallelStyle`.
|
|
|
|
Args:
|
|
module (:class:`nn.Module`):
|
|
The module to be parallelized.
|
|
device_mesh (:class:`DeviceMesh`):
|
|
Object which describes the mesh topology of devices for the :class:`DTensor`.
|
|
If the mesh is more than 1-dimensional, we will use the mesh dim of
|
|
`device_mesh` specified by `tp_mesh_dim`.
|
|
parallel_style (:class:`ParallelStyle`, optional):
|
|
The object which describes how the :class:`nn.Linear` module
|
|
should be distributed over :class:`DeviceMesh` and how the input
|
|
and output should be prepared for Tensor Parallelism.
|
|
:class:`RowwiseStyle`: weight is sharded on dim 1 and bias is
|
|
replicate.
|
|
:class:`ColwiseStyle`: weight and bias are both sharded on dim 0.
|
|
Default: :class:`ColwiseParallel`
|
|
tp_mesh_dim (int):
|
|
The dimension of :class:`DeviceMesh` on which we
|
|
perform Tensor Parallelism.
|
|
Default: 0
|
|
|
|
Return:
|
|
A :class:`nn.Module` object parallelized.
|
|
"""
|
|
|
|
if not isinstance(module, nn.Linear):
|
|
raise RuntimeError(
|
|
f"Expect a torch.nn.Linear module but received {type(module)}!"
|
|
)
|
|
|
|
if not isinstance(parallel_style, ParallelStyle):
|
|
raise RuntimeError(
|
|
"Expect a ParallelStyle object but received" f" {type(parallel_style)}!"
|
|
)
|
|
|
|
if device_mesh.ndim > 1:
|
|
device_mesh = _create_1d_device_mesh(device_mesh, tp_mesh_dim)
|
|
|
|
if isinstance(parallel_style, (RowwiseParallel)):
|
|
distribute_module(
|
|
module,
|
|
device_mesh,
|
|
_rowwise_parallelize_linear_fn,
|
|
input_fn=parallel_style._prepare_input, # type: ignore[arg-type, misc] # pyre-ignore[6]
|
|
output_fn=parallel_style._prepare_output, # type: ignore[arg-type, misc] # pyre-ignore[6]
|
|
)
|
|
elif isinstance(parallel_style, (ColwiseParallel)):
|
|
distribute_module(
|
|
module,
|
|
device_mesh,
|
|
_colwise_parallelize_linear_fn,
|
|
input_fn=parallel_style._prepare_input, # type: ignore[arg-type, misc] # pyre-ignore[6]
|
|
output_fn=parallel_style._prepare_output, # type: ignore[arg-type, misc] # pyre-ignore[6]
|
|
)
|
|
else:
|
|
raise RuntimeError(f"{type(parallel_style)} is not supported!")
|
|
return module
|
|
|
|
|
|
def _parallelize_mlp(
|
|
module: nn.Module,
|
|
device_mesh: DeviceMesh,
|
|
parallel_style: ParallelStyle = PairwiseParallel(),
|
|
tp_mesh_dim: int = 0,
|
|
) -> nn.Module:
|
|
"""
|
|
This function assumes the input module is a sequence of nn.Linear
|
|
and we parallelize the module based on the given parallel style.
|
|
We don't change the FQN of each sub-module and replace each parameter
|
|
in place.
|
|
|
|
Args:
|
|
module (:class:`nn.Module`):
|
|
Module to be parallelized.
|
|
device_mesh (:class:`DeviceMesh`):
|
|
Object which describes the mesh topology of devices.
|
|
parallel_style (:class:`ParallelStyle`):
|
|
Object which contains how we prepare input/output
|
|
for Tensor Parallelism.
|
|
tp_mesh_dim (int):
|
|
The dimension of `device_mesh` where we perform
|
|
Tensor Parallelism on.
|
|
|
|
Return:
|
|
A :class:`nn.Module` object parallelized.
|
|
|
|
.. warning::
|
|
We only support ``PairwiseParallel`` right now.
|
|
"""
|
|
if not isinstance(parallel_style, PairwiseParallel):
|
|
raise NotImplementedError(
|
|
"Only support PairwiseParallel for MLP parallelization."
|
|
)
|
|
|
|
if not _is_mlp_for_pairwise_parallel(module):
|
|
raise RuntimeError("More than one nn.Linear needed for a MLP.")
|
|
|
|
if device_mesh.ndim > 1:
|
|
device_mesh = _create_1d_device_mesh(device_mesh, tp_mesh_dim)
|
|
|
|
linear_submodules = list(
|
|
filter(lambda x: isinstance(x, nn.Linear), module.children())
|
|
)
|
|
mlp_last_even_layer = (len(linear_submodules) // 2) * 2
|
|
for i in range(mlp_last_even_layer):
|
|
m = linear_submodules[i]
|
|
if i % 2 == 0:
|
|
# Col-wise Parallelize the linear layer
|
|
distribute_module(
|
|
m,
|
|
device_mesh,
|
|
_colwise_parallelize_linear_fn,
|
|
input_fn=parallel_style._prepare_input # type: ignore[arg-type, misc] # pyre-ignore[6]
|
|
if i == 0
|
|
else None,
|
|
)
|
|
else:
|
|
# Row-wise Parallelize the linear layer
|
|
distribute_module(
|
|
m,
|
|
device_mesh,
|
|
_rowwise_parallelize_linear_fn,
|
|
output_fn=parallel_style._prepare_output # type: ignore[arg-type, misc] # pyre-ignore[6]
|
|
if i == (mlp_last_even_layer - 1)
|
|
else None,
|
|
)
|
|
return module
|