pytorch/torch/_dynamo/variables/nn_module.py

585 lines
21 KiB
Python

import functools
import inspect
import itertools
import types
from contextlib import contextmanager
from typing import Dict, List
import torch.nn
from .. import skipfiles, variables
from ..allowed_functions import is_allowed
from ..exc import RestartAnalysis, unimplemented
from ..guards import GuardBuilder
from ..mutation_guard import GenerationTracker
from ..source import AttrSource, GetItemSource, NNModuleSource, NotNNModuleSource
from ..utils import (
is_lazy_module,
is_safe_constant,
istensor,
istype,
proxy_args_kwargs,
)
from .base import MutableLocal, typestr, VariableTracker
from .functions import invoke_and_store_as_constant
from .lists import SliceVariable
from .user_defined import UserDefinedObjectVariable
class NNModuleVariable(VariableTracker):
_nonvar_fields = ["module_type", "module_key"]
def __init__(self, module_type: type, module_key: str, **kwargs):
super(NNModuleVariable, self).__init__(**kwargs)
self.module_type = module_type
self.module_key = module_key
assert self.source
def python_type(self):
return self.module_type
def _wrap_submodule(self, tx, source, submod, *key_extra, **options):
return
def unpack_var_sequence(self, tx):
# implement list/iter/tuple/etc calls
base = tx.output.get_submodule(self.module_key)
options = VariableTracker.propagate([self])
assert isinstance(
base, (torch.nn.ModuleList, torch.nn.ParameterList, torch.nn.Sequential)
), typestr(base)
assert self.source
result = []
for idx, submod in enumerate(base):
result.append(
tx.output.register_attr_or_module(
submod,
self.module_key,
idx,
source=NNModuleSource(GetItemSource(self.source, idx)),
**options,
)
)
return result
def call_hasattr(self, tx, name: str) -> "VariableTracker":
options = VariableTracker.propagate(self)
mod = tx.output.get_submodule(self.module_key)
result = hasattr(mod, name)
return variables.ConstantVariable(result, **options).add_guard(
NNModuleSource(AttrSource(self.source, name)).make_guard(
GuardBuilder.HASATTR
)
)
def is_training(self, tx):
mod = tx.output.get_submodule(self.module_key)
return getattr(mod, "training", False)
def convert_to_unspecialized(self, tx):
"""Restart analysis treating this module as an UnspecializedNNModuleVariable"""
mod = tx.output.get_submodule(self.module_key)
GenerationTracker.tag(mod)
# Mark the class dynamic unless its module initialization
if tx.f_code.co_name != "__init__":
GenerationTracker.mark_class_dynamic(type(mod))
raise RestartAnalysis()
def var_getattr(self, tx, name):
from .builder import VariableBuilder
options = VariableTracker.propagate(self)
guards = options.get("guards", set())
if self.source:
source = AttrSource(self.source, name)
options["source"] = source
else:
source = None
base = tx.output.get_submodule(self.module_key)
base_dict = object.__getattribute__(base, "__dict__")
object_member = True
all_class_attribute_names = set()
for x in inspect.getmro(base.__class__):
all_class_attribute_names.update(x.__dict__.keys())
if not self.source:
unimplemented("GETATTR with no source")
if name in base_dict:
subobj = base_dict[name]
elif (
"_modules" in base_dict
and name in base_dict["_modules"]
and name not in all_class_attribute_names
):
subobj = base_dict["_modules"][name]
elif "_parameters" in base_dict and name in base_dict["_parameters"]:
subobj = base_dict["_parameters"][name]
elif "_buffers" in base_dict and name in base_dict["_buffers"]:
subobj = base_dict["_buffers"][name]
else:
subobj = inspect.getattr_static(base, name)
object_member = False
if name == "__class__" and not object_member:
return variables.UserDefinedClassVariable(base.__class__, **options)
if object_member:
return VariableBuilder(tx, NNModuleSource(source))(subobj)
else:
if istype(subobj, property):
return variables.UserFunctionVariable(
subobj.fget, guards=guards
).call_function(tx, [(self)], {})
elif istype(subobj, classmethod):
return variables.UserMethodVariable(
subobj.__func__,
variables.UserDefinedObjectVariable(type(base), guards=guards),
**options,
)
elif istype(subobj, staticmethod):
return variables.UserFunctionVariable(subobj.__get__(base), **options)
elif istype(subobj, types.FunctionType):
return variables.UserMethodVariable(subobj, self, **options)
elif is_safe_constant(subobj) or istensor(subobj):
# Support possibly common cases of class members
return VariableBuilder(tx, NNModuleSource(source))(subobj)
else:
unimplemented(f"class property {typestr(base)} {typestr(subobj)}")
return variables.GetAttrVariable(self, name, **options)
def call_function(
self,
tx,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
options = VariableTracker.propagate(self, args, kwargs.values())
mod = tx.output.get_submodule(self.module_key)
@contextmanager
def record_nn_module_stack():
try:
tx.nn_module_stack[self.module_key] = type(mod)
yield
finally:
del tx.nn_module_stack[self.module_key]
with record_nn_module_stack():
is_lazy = is_lazy_module(mod)
if (
isinstance(mod, torch.nn.Sequential)
and mod.__class__.forward is torch.nn.Sequential.forward
):
# unroll Sequential()
assert not kwargs
(arg,) = args
for idx, submod in enumerate(mod):
tx.call_function(
tx.output.register_attr_or_module(
submod,
self.module_key,
idx,
source=NNModuleSource(GetItemSource(self.source, idx)),
**options,
),
[arg],
{},
)
arg = tx.pop()
return arg
elif is_allowed(mod.__class__):
# The module type will change after it is called
if is_lazy:
self.module_type = mod.cls_to_become
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_module",
self.module_key,
*proxy_args_kwargs(args, kwargs),
current_tx=tx,
),
**options,
)
else:
# for lazy modules, run the pre-hooks which will update the type
# TODO mlazos: we don't fully support all of the hooks that exist,
# so restrict using __call__ only to lazy modules for now
if is_lazy:
fn = mod.__class__.__call__
else:
fn = mod.__class__.forward
return tx.inline_user_function_return(
variables.UserFunctionVariable(fn, **options),
[self] + args,
kwargs,
)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
constant=False,
) -> "VariableTracker":
from . import ConstantVariable, ListIteratorVariable, TupleVariable
options = VariableTracker.propagate(self, args, kwargs.values())
key = self.module_key
module = tx.output.get_submodule(key)
if name == "forward":
return self.call_function(tx, args, kwargs)
if name == "_check_input_dim" and skipfiles.is_torch_inline_allowed(
inspect.getfile(module.__class__._check_input_dim)
):
return ConstantVariable(True, **options)
if name == "_get_item_by_idx":
assert args[1].is_python_constant()
assert isinstance(args[0], TupleVariable)
mod_var = args[0].items[args[1].value]
key = mod_var.module_key
submod = tx.output.get_submodule(key)
return tx.output.register_attr_or_module(
submod,
key,
key,
source=NNModuleSource(GetItemSource(self.source, key)),
**options,
)
if constant:
fn = getattr(module, name)
name = f"{module.__class__.__name__}_{name}_result"
return invoke_and_store_as_constant(tx, fn, name, options, args, kwargs)
def assert_all_args_kwargs_const():
if not all(
x.is_python_constant() for x in itertools.chain(args, kwargs.values())
):
raise unimplemented(f"non-const NNModule method {name}")
def get_kwargs(*names):
assert_all_args_kwargs_const()
fn = getattr(module, name)
bound_args = inspect.signature(fn).bind(
*([x.as_python_constant() for x in args]),
**{k: v.as_python_constant() for k, v in kwargs.items()},
)
bound_args.apply_defaults()
bound_args = bound_args.arguments
return {k: bound_args[k] for k in names}
def wrap_values(items):
result = []
for name, submod in items:
result.append(
tx.output.register_attr_or_module(
submod,
key,
name,
source=NNModuleSource(gen_source(self.source, name)),
**options,
)
)
return ListIteratorVariable(result, mutable_local=MutableLocal(), **options)
def named_embed(name, obj):
return TupleVariable(
[
ConstantVariable(name, **options),
tx.output.register_attr_or_module(
obj,
key,
name,
source=NNModuleSource(gen_source(self.source, name)),
**options,
),
]
)
def gen_source(source, name):
name_split = name.split(".")
if name_split[0] == "":
return source
while len(name_split) > 0:
x = name_split.pop(0)
source = AttrSource(source, x)
return source
if name == "children":
assert not (args or kwargs)
return wrap_values(module.named_children())
elif name == "named_parameters":
result = []
for name, param in module.named_parameters(
**get_kwargs("prefix", "recurse")
):
result.append(named_embed(name, param))
return ListIteratorVariable(result, mutable_local=MutableLocal(), **options)
elif name == "named_buffers":
result = []
for name, buffer in module.named_buffers(
**get_kwargs("prefix", "recurse", "remove_duplicate")
):
result.append(named_embed(name, buffer))
return ListIteratorVariable(result, mutable_local=MutableLocal(), **options)
elif name == "named_modules":
result = []
for name, submod in module.named_modules(
**get_kwargs("memo", "prefix", "remove_duplicate")
):
result.append(named_embed(name, submod))
return ListIteratorVariable(result, mutable_local=MutableLocal(), **options)
elif name == "modules":
return wrap_values(module.named_modules())
elif name == "parameters":
return wrap_values(module.named_parameters(**get_kwargs("recurse")))
elif name == "values":
assert not (args or kwargs)
return wrap_values(module.items())
elif name == "items":
assert not (args or kwargs)
result = []
for name, submod in module.items():
result.append(named_embed(name, submod))
return ListIteratorVariable(result, mutable_local=MutableLocal(), **options)
elif name == "__len__":
assert not (args or kwargs)
return ConstantVariable(len(module), **options)
elif (
name == "__contains__"
and isinstance(module, (torch.nn.ModuleDict, torch.nn.ParameterDict))
and args
and args[0].is_python_constant()
):
return ConstantVariable(
args[0].as_python_constant() in module._modules, **options
)
elif name == "__getitem__":
assert not kwargs and len(args) == 1
assert type(module).__getitem__ in (
torch.nn.ModuleDict.__getitem__,
torch.nn.ModuleList.__getitem__,
torch.nn.ParameterList.__getitem__,
torch.nn.Sequential.__getitem__,
), typestr(module)
assert self.source
if isinstance(args[0], SliceVariable):
# Build a TupleVariable of NNModules
result = []
submods = []
# Turn the slice into the list of integers
keys = list(range(len(module)))[args[0].as_python_constant()]
for idx, submod in enumerate(module[args[0].as_python_constant()]):
key = keys[idx]
src = NNModuleSource(GetItemSource(self.source, key))
result.append(
tx.output.register_attr_or_module(
submod,
key,
source=src,
**options,
)
)
submods.append(submod)
new_module = torch.nn.Sequential(*submods)
new_module_variable = tx.output.register_attr_or_module(
new_module,
f"{self}.__getitem__(slice)",
source=NNModuleSource(
GetItemSource(self.source, args[0].as_python_constant())
),
**options,
)
return new_module_variable
key = args[0].as_python_constant()
submod = module[key]
return tx.output.register_attr_or_module(
submod,
key,
args[0].as_python_constant(),
source=NNModuleSource(GetItemSource(self.source, key)),
**options,
)
elif name == "_get_abs_string_index":
# Inline the function
fn = getattr(module, name).__func__
return tx.inline_user_function_return(
variables.UserFunctionVariable(fn, **options),
[self] + args,
kwargs,
)
# A loose heuristic, but seems to be generally good before we drop into the
# manual handling of inputs
elif (
name in module.__class__.__dict__
and callable(module.__class__.__dict__[name])
and all(
isinstance(x, variables.TensorVariable)
for x in itertools.chain(args, kwargs.values())
)
):
# TODO(voz): Refactor this into a generic as_proxy() for nn module
# We use variations of this pattern in a few places now.
def make_attr(name):
node = tx.output.create_proxy(
"get_attr",
name,
tuple(),
{},
)
return node
# Bind in self
tx.output.register_attr_or_module(
module,
self.module_key,
self.module_key,
source=NNModuleSource(GetItemSource(self.source, self.module_key)),
**options,
)
proxy_for_mod = make_attr(self.module_key)
proxy_for_mod.node.meta["example_value"] = module
proxy_args, proxy_kwargs = proxy_args_kwargs(args, kwargs)
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_method",
name,
args=(proxy_for_mod, *proxy_args),
kwargs=proxy_kwargs,
current_tx=tx,
),
**options,
)
else:
return super().call_method(tx, name, args, kwargs)
class UnspecializedNNModuleVariable(UserDefinedObjectVariable):
"""
The above class will specialize on the id() of a module and place
parameters on the torch.fx.GraphModule. Giving one graph per
module instance. This version treats nn.Modules() like other user
defined objects and will pass parameters into the FX graph as inputs.
Giving one graph per module class.
"""
def __init__(self, value, **kwargs):
super(UnspecializedNNModuleVariable, self).__init__(value=value, **kwargs)
if self.source and self.source.is_nn_module():
# force guard checks even when `not config.guard_nn_modules``
self.source = NotNNModuleSource(self.source)
@staticmethod
@functools.lru_cache(None)
def _nn_module_method_ids():
return {
id(x.__code__)
for x in torch.nn.Module.__dict__.values()
if hasattr(x, "__code__")
}
def unpack_var_sequence(self, tx):
from .builder import VariableBuilder
try:
fn = inspect.getattr_static(self.value_type, "__iter__")
except AttributeError:
raise NotImplementedError()
if fn in (
torch.nn.ModuleList.__iter__,
torch.nn.ParameterList.__iter__,
torch.nn.Sequential.__iter__,
):
assert self.source
return [
VariableBuilder(tx, source=GetItemSource(self.source, idx))(
item
).add_options(self)
for idx, item in enumerate(self.value)
]
return super().unpack_var_sequence(tx)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
options = VariableTracker.propagate(self, args, kwargs.values())
# TODO mlazos: only support __call__ for lazy modules
# until we can support a larger swath of python
if is_lazy_module(self.value):
fn = self.value_type.__call__
else:
fn = self.value_type.forward
return variables.UserFunctionVariable(fn, **options).call_function(
tx, [self] + list(args), kwargs
)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from .builder import VariableBuilder
options = VariableTracker.propagate(self, args, kwargs.values())
if name not in getattr(self.value, "__dict__", {}):
try:
method = inspect.getattr_static(type(self.value), name)
except AttributeError:
method = None
if method is torch.nn.Module.parameters:
assert not args or kwargs
options["guards"].add(
self.source.make_guard(GuardBuilder.NN_MODULE_PARAM_NAMES)
)
items = []
for name, value in self.value.named_parameters():
items.append(
VariableBuilder(tx, AttrSource(self.source, name))(
value
).add_options(options)
)
return variables.ListIteratorVariable(
items, mutable_local=MutableLocal(), **options
)
elif isinstance(method, staticmethod):
return tx.inline_user_function_return(
variables.UserFunctionVariable(method.__func__, **options),
args,
kwargs,
)
if id(method.__code__) in self._nn_module_method_ids():
unimplemented(f"UnspecializedNNModuleVariable missing {name}")
return super().call_method(tx, name, args, kwargs)