pytorch/test/cpp/jit/test_lite_interpreter.cpp
Martin Yuan d833caaf6b [PyTorch Mobile][Forward/backward compatibility] Number of arguments for operators (#56845)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56845

Handle forward/backward compatibility caused by added default arguments in mobile. As an example,

In older version, operator aten::foo's schema is
```
foo(Tensor a, Tensor b) -> Tensor
```
In the new version, the schema is updated to
```
foo(Tensor a, Tensor b, int groups=1) -> Tensor
```

## Model file
Serialize the number of specified arguments to each operator into the bytecode operator table. Before the operator table contains operator name and overload name:
```
('operators', (('aten::foo', ''),))
```
Now the number of specified arguments is added:
```
# bytecode version 6
('operators', (('aten::foo', '', 2),))
```
where "2" means the number of specified arguments.

Since there's bytecode schema change, the bytecode version number is bumped. This PR is to be landed after #56002 , where the version number is bumped from 4 to 5. This PR bumps the version number from 5 to 6.

## Runtime and backward compatibility
When the operator is found (either jit or c10), we have the OperatorHandle, where the operator schema can be accessed by
```
op.value().schema().arguments()
```
Adaptation is implemented to handle backward compatibility. For the example above, the new runtime holds the updated schema:
```
foo(Tensor a, Tensor b, int groups=1) -> Tensor
```
Whereas the model file carries
```
(('aten::foo', ''), 2)
```
We can implement a wrapper around the original function pointer to push the default argument to the stack.

## Deliver time and forward compatibility
At model delivery time, two checks can be done:
### Operator check
Two APIs to be provided:
* Runtime: An API to get a runtime’s ops and their schemas (i.e. the # of args). D27920185(WIP)
* Model: An API to get a model’s ops and their schema requirements (i.e. the # of args required).

The APIs can be used to check
* runtime.ops() is a superset of model.ops()
* for each op in model.ops() validate their schemas are compatible with those in runtime.ops() -- i.e. the # args required in a model op are <= # args in the runtime op.

Note that only root ops in the model needs to be checked here. For transient ops it's not necessary. For example, if a root op, "aten::root" calls "aten::foo", it's "aten::root"'s responsibility to adapt to "aten::foo"'s change, or "aten::root" itself needs to be updated too.
### Bytecode version backport (PR coming)
When delivering a model with bytecode v6, if the runtime only works with bytecode v5 and lower, backport is needed.
* The number of arguments is removed from the operator table
* The bytecode version is changed from 6 to 5

Note that this backport is a pure format change, it does not guarantee the backported model always runs in old runtime. The operator check mentioned before should be done first, before it’s back ported to v5.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D27986544

Pulled By: iseeyuan

fbshipit-source-id: 143e19d4798cfb96b65095538dd648eead4e3fda
2021-05-13 14:20:47 -07:00

1310 lines
38 KiB
C++

#include <test/cpp/jit/test_utils.h>
#include <gtest/gtest.h>
#include <c10/core/TensorOptions.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/resolver.h>
#include <torch/csrc/jit/mobile/backport.h>
#include <torch/csrc/jit/mobile/backport_manager.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/model_compatibility.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/mobile/runtime_compatibility.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/custom_class.h>
#include <torch/torch.h>
#include <unordered_set>
// Tests go in torch::jit
namespace torch {
namespace jit {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, UpsampleNearest2d) {
Module m("m");
m.define(R"(
def forward(self, input: Tensor, scale:float):
return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale))
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({1, 3, 128, 128}));
inputs.emplace_back(at::Scalar(2.0));
auto ref = m.forward(inputs);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
res = bc.forward(inputs);
auto resd = res.toTensor();
auto refd = ref.toTensor();
ASSERT_TRUE(resd.equal(refd));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, CheckAttrAccess) {
Module m("m");
m.register_attribute("mobile_optimized", BoolType::get(), true);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
bool mobile_optimized = bc.attr("mobile_optimized", false).toBool();
AT_ASSERT(mobile_optimized);
m.setattr("mobile_optimized", false);
ss = std::stringstream();
m._save_for_mobile(ss);
bc = _load_for_mobile(ss);
mobile_optimized = bc.attr("mobile_optimized", false).toBool();
AT_ASSERT(!mobile_optimized);
}
TEST(LiteInterpreterTest, MethodInvocation) { // NOLINT (use =delete in gtest)
const std::vector<std::string> test_programs{
// test invoking a method with default parameter
R"(
def test_func(self, x, b : int = 4):
return self.foo + x + b
)",
// inner method call with default parameter (gets inlined)
R"(
def add_with_default_arg(self, x, b : int = 4):
return self.foo + x + b
def test_func(self, x):
return self.add_with_default_arg(x) # invoke method w/ default arg
)",
// simple method call
R"(
def test_func(self, x):
b = 4
return self.foo + x + b
)",
};
for (const auto& test_program : test_programs) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(test_program);
const int fortyTwo = 42; // (keep linter happy)
auto minput = fortyTwo * torch::ones({});
auto ref = m.run_method("test_func", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
const auto& test_func = bc.get_method("test_func");
IValue res;
for (int i = 0; i < 3; ++i) {
res = test_func({minput});
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, Conv) {
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
if (s && strcmp(s, "1") == 0)
return;
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
return torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
)");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace)
inputs.push_back(torch::ones({1, 1, 28, 28}));
auto outputref = m.forward(inputs).toTensor();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, Inline) {
Module m("m");
m.define(R"JIT(
def foo1(self, x):
return x + 1
def foo2(self, x):
return self.foo1(x) + 2
def foo3(self, x):
return self.foo2(x) + 3
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("foo3")(inputs);
AT_ASSERT(output.toTensor().item<float>() == 7.0);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, Tuple) {
Module m("m");
m.define(R"JIT(
def foo(self, x):
return (1, 2, x + 3)
def forward(self, x):
tuple = self.foo(x)
return tuple
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toTuple()->elements()[1].toInt() == 2);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, Dict) {
Module m("m");
m.define(R"JIT(
def foo(self, x):
return {"result": x + 1}
def forward(self, x):
d = self.foo(x)
return d
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toGenericDict().at("result").toTensor().item().toInt() == 2);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, PrimOverload) {
/*
// temporarily disabled
script::Module m("m");
m.define(R"JIT(
def forward(self, x):
result = [1, 2]
result.append(3)
return result
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toIntList()[2] == 3);
*/
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, Prim) {
Module m("m");
m.define(R"JIT(
def forward(self, x):
return int(x)
)JIT");
std::vector<IValue> inputs;
auto minput = 3.5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.run_method("forward", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resi = res.toInt();
auto refi = ref.toInt();
AT_ASSERT(resi == refi);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, PrimScalar) {
Module m("m");
m.define(R"JIT(
def forward(self, x):
return int(x.item())
)JIT");
std::vector<IValue> inputs;
auto minput = 3.5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.run_method("forward", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resi = res.toInt();
auto refi = ref.toInt();
AT_ASSERT(resi == refi);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, LoadOrigJit) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def forward(self, x):
b = 4
return self.foo + x + b
)");
std::stringstream ss;
m.save(ss);
ASSERT_THROWS_WITH_MESSAGE(_load_for_mobile(ss), "file not found");
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, WrongMethodName) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add(self, x):
b = 4
return self.foo + x + b
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
ASSERT_THROWS_WITH_MESSAGE(
bc.get_method("forward")(inputs), "is not defined");
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, SetState) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def __getstate__(self):
return self.foo + self.foo
def __setstate__(self, a):
self.foo = a
def forward(self, x):
b = 4
return self.foo + x + b
)");
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
std::stringstream ms;
m.save(ms);
auto loaded_m = load(ms);
auto ref = loaded_m.run_method("forward", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
class TorchBindLiteInterpreterTestStruct
: public torch::jit::CustomClassHolder {
public:
std::string get(at::Tensor t) {
std::stringstream ss;
ss << "Hello! Your tensor has ";
ss << t.numel();
ss << " elements!";
return ss.str();
}
};
namespace {
struct ClassNamespaceValue : public SugaredValue {
explicit ClassNamespaceValue(c10::QualifiedName name)
: basename_(std::move(name)) {}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& name) override {
const auto fullName = c10::QualifiedName(basename_, name);
// Check to see if it is a custom class.
if (auto custom_class = getCustomClass(fullName.qualifiedName())) {
return std::make_shared<ClassValue>(custom_class);
}
// If it's not a custom class, assume it's another namespace
// NOLINTNEXTLINE(performance-move-const-arg)
return std::make_shared<ClassNamespaceValue>(std::move(fullName));
}
std::string kind() const override {
return "Class Namespace";
}
private:
c10::QualifiedName basename_;
};
struct TestModuleResolver : public Resolver {
std::shared_ptr<SugaredValue> resolveValue(
const std::string& name,
Function& m,
const SourceRange& loc) override {
if (name == "torch") {
return std::make_shared<BuiltinModule>("aten");
} else if (name == "__torch__") {
return std::make_shared<ClassNamespaceValue>(c10::QualifiedName(name));
}
return nullptr;
}
TypePtr resolveType(const std::string& name, const SourceRange& loc)
override {
return nullptr;
}
};
} // namespace
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, BuiltinClass) {
script::Module m("m");
auto cls = getCustomClass(
"__torch__.torch.classes._TorchScriptTesting._LiteInterpreterTest");
TORCH_INTERNAL_ASSERT(cls);
c10::intrusive_ptr<torch::CustomClassHolder> obj_holder;
m.register_attribute("my_obj", cls, IValue::make_capsule(obj_holder));
m.register_parameter("foo", torch::ones({}), false);
m.define(
R"(
def __getstate__(self):
return 1
def __setstate__(self, a):
self.my_obj = __torch__.torch.classes._TorchScriptTesting._LiteInterpreterTest()
def forward(self, x) -> str:
return self.my_obj.get(x)
)",
std::make_shared<TestModuleResolver>());
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
auto res =
bc.get_method("forward")(std::vector<IValue>{torch::zeros({3, 4})});
const auto& str = res.toStringRef();
std::string expected = "Hello! Your tensor has 12 elements!";
AT_ASSERT(str == expected);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, BuiltinFunction) {
script::Module m("m");
auto custom_class_obj =
make_custom_class<TorchBindLiteInterpreterTestStruct>();
m.register_attribute("my_obj", custom_class_obj.type(), custom_class_obj);
m.define(R"(
def forward(self, x) -> str:
return self.my_obj.get(x)
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
auto res =
bc.get_method("forward")(std::vector<IValue>{torch::zeros({3, 4})});
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto str = res.toStringRef();
std::string expected = "Hello! Your tensor has 12 elements!";
AT_ASSERT(str == expected);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, ModuleInfoBasic) {
Module m("M");
m.define(R"JIT(
def forward(self, x):
return 2 * x
)JIT");
std::stringstream ss;
m._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::unordered_set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
std::unordered_set<std::string> expected_result({"top(M)"});
AT_ASSERT(module_debug_info_set == expected_result);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, NotSaveModuleInfo) {
Module m("M");
m.define(R"JIT(
def forward(self, x):
return x + 5
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
AT_ASSERT(
module_info.empty() ||
(module_info.find("debug_handle") != std::string::npos));
++pc;
} catch (const std::exception& e) {
break;
}
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, OneSubmoduleModuleInfo) {
Module a("A");
a.define(R"JIT(
def forward(self, x):
return 2 * x + 5
)JIT");
Module b("B");
b.register_module("A0", a);
b.define(R"JIT(
def forward(self, x):
return self.A0.forward(x) + 1
)JIT");
std::stringstream ss;
b._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
std::set<std::string> expected_result({"top(B)", "top(B).A0(A)"});
AT_ASSERT(module_debug_info_set == expected_result);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, TwoSubmodulesModuleInfo) {
Module a("A");
a.define(R"JIT(
def forward(self, x):
return x + 1
)JIT");
Module b("B");
b.define(R"JIT(
def forward(self, x):
return x + 2
)JIT");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"JIT(
def forward(self, x):
return self.A0.forward(x) + self.B0.forward(x)
)JIT");
std::stringstream ss;
c._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
std::cout << "Module info:" << module_info << std::endl;
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
std::set<std::string> expected_result(
{"top(C)", "top(C).A0(A)", "top(C).B0(B)"});
AT_ASSERT(module_debug_info_set == expected_result);
}
TEST(LiteInterpreterTest, GetRuntimeByteCodeVersion) {
auto runtime_bytecode_version = _get_runtime_bytecode_version();
AT_ASSERT(
runtime_bytecode_version == caffe2::serialize::kProducedBytecodeVersion);
}
TEST(LiteInterpreterTest, GetByteCodeVersion) {
std::string filePath(__FILE__);
auto test_model_file_v4 =
filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file_v4.append("script_module_v4.ptl");
auto version_v4 = _get_model_bytecode_version(test_model_file_v4);
AT_ASSERT(version_v4 == 4);
}
namespace {
void runAndCheckBytecodeModel(
std::stringstream& input_model_stream,
const std::vector<IValue>& input_data,
const std::vector<Tensor>& expect_result_list,
const int64_t expect_version) {
auto actual_version = _get_model_bytecode_version(input_model_stream);
AT_ASSERT(actual_version == expect_version);
// Load and run the backport model, then compare the result with expect
// result
mobile::Module m_mobile = _load_for_mobile(input_model_stream);
auto actual_result = m_mobile.forward(input_data);
std::vector<IValue> actual_result_list = actual_result.toTuple()->elements();
AT_ASSERT(actual_result_list.size() == expect_result_list.size());
AT_ASSERT(actual_result_list[0].toTensor().equal(expect_result_list[0]));
AT_ASSERT(
actual_result_list[1].toTensor().dim() == expect_result_list[1].dim());
AT_ASSERT(actual_result_list[2].toTensor().equal(expect_result_list[2]));
}
void backportAllVersionCheck(
std::stringstream& test_model_file_stream,
std::vector<IValue>& input_data,
std::vector<Tensor>& expect_result_list,
const int64_t expect_from_version) {
auto from_version = _get_model_bytecode_version(test_model_file_stream);
AT_ASSERT(from_version == expect_from_version);
// Backport script_module_v5.ptl to an older version
constexpr int64_t minimum_to_version = 4;
int64_t current_to_version = from_version - 1;
std::ostringstream oss;
// Verify all candidate to_version work as expected. All backport to version
// larger than minimum_to_version should success.
while (current_to_version >= minimum_to_version) {
oss.clear();
bool backPortSuccess =
_backport_for_mobile(test_model_file_stream, oss, current_to_version);
AT_ASSERT(backPortSuccess);
// Check backport model version
std::stringstream iss(oss.str());
auto backport_version = _get_model_bytecode_version(iss);
AT_ASSERT(backport_version == current_to_version);
// Load and run the backport model, then compare the result with expect
// result
runAndCheckBytecodeModel(
iss, input_data, expect_result_list, current_to_version);
current_to_version--;
}
// backport to minimum version - 1 should fail
oss.clear();
bool backPortSuccess =
_backport_for_mobile(test_model_file_stream, oss, minimum_to_version - 1);
AT_ASSERT(!backPortSuccess);
}
} // namespace
TEST(LiteInterpreterTest, BackPortByteCodeModelAllVersions) {
torch::jit::Module module("m");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
module.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
module.register_parameter("bias", torch::ones({20}), false);
module.define(R"(
def forward(self, input):
x1 = torch.zeros(2, 2)
x2 = torch.empty_like(torch.empty(2, 2))
x3 = torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
return (x1, x2, x3)
)");
torch::jit::Module module_freeze = freeze(module);
std::stringstream input_model_stream;
module_freeze._save_for_mobile(input_model_stream);
std::vector<IValue> input_data =
std::vector<IValue>({torch::ones({1, 1, 28, 28})});
std::vector<Tensor> expect_result_list;
expect_result_list.emplace_back(at::ones({2, 2}, ScalarType::Float) * 0);
expect_result_list.emplace_back(at::ones({2, 2}, ScalarType::Float));
expect_result_list.emplace_back(
at::ones({1, 20, 24, 24}, ScalarType::Float) * 26);
backportAllVersionCheck(
input_model_stream,
input_data,
expect_result_list,
caffe2::serialize::kProducedBytecodeVersion);
}
TEST(LiteInterpreterTest, GetRuntimeOpsAndInfo) {
auto runtime_ops = _get_runtime_ops_and_info();
// Ballpark estimate of the minimal number of ops; just used to
// verify API returns a reasonably large number.
AT_ASSERT(runtime_ops.size() > 2900);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, SequentialModuleInfo) {
Module a("A");
a.define(R"JIT(
def forward(self, x):
return x + 1
)JIT");
Module b("B");
b.define(R"JIT(
def forward(self, x):
return x + 2
)JIT");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"JIT(
def forward(self, x):
return self.A0.forward(self.B0.forward(x))
)JIT");
std::stringstream ss;
c._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
// class A(nn.Module):
// def __init__(self):
// super(A, self).__init__()
// def forward(self, x):
// return x + 1
// class B(nn.Module):
// def __init__(self):
// super(B, self).__init__()
// def forward(self, x):
// return x + 2
// class C(nn.Module):
// def __init__(self):
// super(C, self).__init__()
// self.A0 = A()
// self.B0 = B()
// def forward(self, x):
// return self.A0.forward(self.B0.forward(x))
std::set<std::string> expected_result(
{"top(C)", "top(C).A0(A)", "top(C).B0(B)"});
AT_ASSERT(module_debug_info_set == expected_result);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, HierarchyModuleInfo) {
Module a("A");
a.define(R"JIT(
def forward(self, x):
return x + 1
)JIT");
Module b("B");
b.register_module("A0", a);
b.define(R"JIT(
def forward(self, x):
return self.A0.forward(x) + 1
)JIT");
Module c("C");
c.register_module("B0", b);
c.define(R"JIT(
def forward(self, x):
return self.B0.forward(x) + 1
)JIT");
std::stringstream ss;
c._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
// There are 3 module information strings here.
// "top(C).forward": for the add operator in top.
// "top(C).B0(B).forward": for the add operator in B0.
// "top(C).B0(B).forward.A0(A).forward": for the add operator in A0.
std::set<std::string> expected_result(
{"top(C)", "top(C).B0(B)", "top(C).B0(B).A0(A)"});
AT_ASSERT(module_debug_info_set == expected_result);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, DuplicatedClassTypeModuleInfo) {
Module a("A");
a.define(R"JIT(
def forward(self, x):
return x + 5
)JIT");
Module b("B");
b.register_module("A0", a);
b.register_module("A1", a);
b.define(R"JIT(
def forward(self, x):
return self.A0.forward(x) + self.A1.forward(x)
)JIT");
std::stringstream ss;
b._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
// class A(nn.Module):
// def __init__(self):
// super(A, self).__init__()
// def forward(self, x):
// return x + 5
// class B(nn.Module):
// def __init__(self):
// super(B, self).__init__()
// self.A0 = A()
// self.A1 = A()
// def forward(self, x):
// return self.A0.forward(x) + self.A1.forward(x)
// There are 3 module information strings here.
// "top(B).forward": for the add operator in top.
// "top(B).A0(A).forward": for the add operator in A0.
// "top(B).A1(A).forward": for the add operator in A1.
std::set<std::string> expected_result(
{"top(B)", "top(B).A0(A)", "top(B).A1(A)"});
AT_ASSERT(module_debug_info_set == expected_result);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, Eval) {
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.define(R"(
def __init__(self, x):
self.training = True
def forward(self, input):
return torch.dropout(input, 1.0, self.training)
)");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace)
inputs.push_back(torch::ones({1, 1, 28, 28}));
m.eval();
auto outputref = m.forward(inputs).toTensor();
// save m in training mode to make sure that mobile eval() will correctly
// change back to eval mode
m.train();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
bc.eval();
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, FindWrongMethodName) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add(self, x):
b = 4
return self.foo + x + b
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
ASSERT_TRUE(bc.find_method("forward") == c10::nullopt);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, FindAndRunMethod) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_it(self, x):
b = 4
return self.foo + x + b
)");
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.get_method("add_it")(inputs);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
auto bcinputs = inputs;
auto method = bc.find_method("add_it");
AT_ASSERT(method != c10::nullopt);
res = (*method)(std::move(bcinputs));
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, RunMethodVariadic) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_three(self, x, y):
return self.foo + x + y
)");
std::vector<IValue> inputs;
auto inputx = 5 * torch::ones({});
auto inputy = 4 * torch::ones({});
auto ref = m.run_method("add_three", inputx, inputy);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res = bc.run_method("add_three", inputx, inputy);
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, DuplicateSetState) {
Module m("M");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def __getstate__(self):
return self.foo + self.foo
def __setstate__(self, a):
self.foo = a
def forward(self, x):
b = 4
return self.foo + x + b
)");
Module b("B");
b.register_module("M0", m);
b.register_module("M1", m);
b.define(R"(
def forward(self, x):
return self.M0.forward(x) + self.M1.forward(x)
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
const auto methods = bc.get_methods();
const size_t expected_n = 3;
ASSERT_EQ(methods.size(), expected_n);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, ExtraFiles) {
const auto script = R"JIT(
def forward(self):
x = torch.rand(5, 5)
x = x.mm(x)
return x
)JIT";
auto module =
std::make_shared<Module>("Module", std::make_shared<CompilationUnit>());
module->define(script);
std::ostringstream oss;
std::unordered_map<std::string, std::string> extra_files;
extra_files["metadata.json"] = "abc";
extra_files["mobile_info.json"] = "{\"key\": 23}";
module->_save_for_mobile(oss, extra_files);
std::istringstream iss(oss.str());
caffe2::serialize::IStreamAdapter adapter{&iss};
std::unordered_map<std::string, std::string> loaded_extra_files;
loaded_extra_files["metadata.json"] = "";
torch::jit::_load_for_mobile(iss, torch::kCPU, loaded_extra_files);
ASSERT_EQ(loaded_extra_files["metadata.json"], "abc");
loaded_extra_files.clear();
std::vector<std::string> all_files =
caffe2::serialize::PyTorchStreamReader(&iss).getAllRecords();
for (auto& file_name : all_files) {
if (file_name.find("extra/") == 0) {
loaded_extra_files[file_name.substr(6)] = "";
}
}
torch::jit::_load_for_mobile(iss, torch::kCPU, loaded_extra_files);
ASSERT_EQ(loaded_extra_files["metadata.json"], "abc");
ASSERT_EQ(loaded_extra_files["mobile_info.json"], "{\"key\": 23}");
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, OpNameExportFetchRootOperators) {
torch::jit::Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
x1 = torch.zeros(2, 2)
x2 = torch.empty_like(torch.empty(2, 2))
x3 = torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
return (x1, x2, x3)
)");
m.eval();
std::stringstream ss;
m._save_for_mobile(ss);
torch::jit::mobile::Module ptl_model = torch::jit::_load_for_mobile(ss);
std::set<std::string> operator_names =
torch::jit::mobile::_export_operator_list(ptl_model);
std::set<std::string> expected_operator_names = {
"aten::_convolution",
"aten::empty.memory_format",
"aten::empty_like",
"aten::zeros",
};
EXPECT_EQ(operator_names, expected_operator_names)
<< "Expected the root operator lists to be the same";
}
TEST(LiteInterpreterTest, DefaultArgsConv) {
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
if (s && strcmp(s, "1") == 0)
return;
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
return torch.conv2d(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], 1)
)");
inputs.push_back(torch::ones({1, 1, 28, 28}));
auto outputref = m.forward(inputs).toTensor();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 1; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(output.equal(outputref));
}
namespace {
void testLiteModuleCompareResultTensors(
Module& m,
const std::vector<torch::jit::IValue>& inputs) {
auto outputref = m.forward(inputs).toTensor();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(output.equal(outputref));
}
void testDefaultArgsPinv(int num_args) {
Module m("m");
if (num_args == 1) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input)
)");
} else if (num_args == 2) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5)
)");
} else if (num_args == 3) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5, True)
)");
}
std::vector<torch::jit::IValue> inputs;
const int N = 28;
auto input = torch::range(1, N * N, 1);
input[0] = 1; // a more stable matrix
input = input.view({N, N});
inputs.push_back(input);
testLiteModuleCompareResultTensors(m, inputs);
}
} // namespace
TEST(LiteInterpreterTest, DefaultArgsPinv) {
// Test with different number of specified arguments.
// Arguments not specified take default value.
for (int num_args = 1; num_args <= 3; ++num_args) {
testDefaultArgsPinv(num_args);
}
// bytecode with one specified argument:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 1),)),
// ('constants', (False, 1e-15)), # default constants are not
// used
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
// bytecode with 2 specified argument:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('LOADC', 1, 0), # added LOADC for specified argument
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 2),)),
// ('constants', (False, 1e-05)), # updated constant table
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
// bytecode with 3 specified arguments:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('LOADC', 1, 0),
// ('LOADC', 0, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 3),)),
// ('constants', (True, 1e-05)),
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
}
TEST(LiteInterpreterTest, DefaultArgsPinvSpecifyDefault) {
// The second argument is specified, but the value is the same as the default
// value. It's treated as "not specified" since the value can be fetched from
// schema.
Module m("m");
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-15)
)");
torch::jit::MobileCode code(m.get_method("forward").graph(), "forward");
auto arg_nums = code.op_to_num_specified_args();
ASSERT_EQ(arg_nums.size(), 1);
ASSERT_EQ(arg_nums["aten::linalg_pinv"], 1);
std::vector<torch::jit::IValue> inputs;
const int N = 28;
auto input = torch::range(1, N * N, 1);
input[0] = 1; // a more stable matrix
input = input.view({N, N});
inputs.push_back(input);
testLiteModuleCompareResultTensors(m, inputs);
}
namespace {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
static auto reg =
torch::class_<TorchBindLiteInterpreterTestStruct>(
"_TorchScriptTesting",
"_LiteInterpreterTest")
.def(torch::init<>())
.def("get", &TorchBindLiteInterpreterTestStruct::get)
.def_pickle(
// __getattr__
[](const c10::intrusive_ptr<TorchBindLiteInterpreterTestStruct>&
self) -> int64_t { return 0; },
// __setattr__
[](int64_t state) {
return c10::make_intrusive<TorchBindLiteInterpreterTestStruct>();
});
} // namespace
} // namespace jit
} // namespace torch