pytorch/torch/csrc/utils/tensor_new.cpp
2018-01-03 22:33:21 +01:00

150 lines
4.7 KiB
C++

#include <Python.h>
#include "tensor_new.h"
#include <ATen/ATen.h>
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/utils/auto_gil.h"
#include "torch/csrc/utils/auto_gpu.h"
#include "torch/csrc/utils/python_arg_parser.h"
#include "torch/csrc/utils/python_numbers.h"
#include "torch/csrc/utils/python_scalars.h"
#include "torch/csrc/utils/python_strings.h"
#include "torch/csrc/utils/tensor_numpy.h"
static const int MAX_DIMS = 128;
using namespace at;
namespace torch { namespace utils {
static Tensor new_with_sizes(const Type& type, int device, IntList sizes) {
AutoNoGIL no_gil;
AutoGPU auto_gpu(device);
return type.tensor(sizes);
}
static Tensor new_with_storage(const Type& type, Storage& storage) {
auto tensor = type.tensor();
tensor.set_(storage);
return tensor;
}
static Tensor new_with_tensor(const Type& type, Tensor other) {
if (other.type() != type) {
throw TypeError("expected %s (got %s)", type.toString(), other.type().toString());
}
return other.slice();
}
static std::vector<int64_t> compute_sizes(PyObject* seq) {
std::vector<int64_t> sizes;
THPObjectPtr handle;
do {
auto length = PySequence_Length(seq);
if (length < 0) throw python_error();
sizes.push_back(length);
if (sizes.size() > MAX_DIMS) {
throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name);
}
if (length == 0) break;
handle = THPObjectPtr(PySequence_GetItem(seq, 0));
seq = handle.get();
} while (PySequence_Check(seq));
return sizes;
}
static void recursive_store(char* data, IntList sizes, IntList strides, int64_t dim,
ScalarType scalarType, int elementSize, PyObject* obj) {
int64_t ndim = sizes.size();
if (dim == ndim) {
torch::utils::store_scalar(data, scalarType, obj);
return;
}
auto n = sizes[dim];
auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence"));
if (!seq) throw python_error();
auto seq_size = PySequence_Fast_GET_SIZE(seq.get());
if (seq_size != n) {
throw ValueError("expected sequence of length %lld at dim %lld (got %lld)",
(long long)n, (long long)dim, (long long)seq_size);
}
PyObject** items = PySequence_Fast_ITEMS(seq.get());
for (int64_t i = 0; i < n; i++) {
recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]);
data += strides[dim] * elementSize;
}
}
static Tensor new_from_sequence(ScalarType scalarType, PyObject* data) {
if (!PySequence_Check(data)) {
throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name);
}
if (THPUtils_checkString(data)) {
throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)->tp_name);
}
#ifdef WITH_NUMPY
if (PyArray_Check(data)) {
return autograd::make_variable(tensor_from_numpy(data), false);
}
#endif
auto sizes = compute_sizes(data);
auto tensor = autograd::make_variable(CPU(scalarType).tensor(sizes), false);
recursive_store(
(char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0,
scalarType, tensor.type().elementSizeInBytes(), data);
return tensor;
}
static Tensor new_from_sequence(const Type & type, int device, PyObject* data) {
auto tensor = new_from_sequence(type.scalarType(), data);
if (tensor.type() != type) {
AutoNoGIL no_gil;
AutoGPU auto_gpu(device);
tensor = tensor.toType(type);
}
return tensor;
}
Tensor tensor_new(const Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, int64_t device=-1)",
"new(IntList size, *, int64_t device=-1)",
"new(Storage storage)",
"new(*, int64_t cdata)|hidden",
"new(Tensor other)",
"new(PyObject* data, *, int64_t device=-1)",
});
PyObject* parsed_args[2];
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
AutoGPU auto_gpu(r.toInt64(0));
return type.tensor();
} else if (r.idx == 1) {
PyObject* arg = parsed_args[0];
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return new_from_sequence(type, r.toInt64(1), r.pyobject(0));
}
return new_with_sizes(type, r.toInt64(1), r.intlist(0));
} else if (r.idx == 2) {
return new_with_storage(type, *r.storage(0));
} else if (r.idx == 3) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return type.unsafeTensorFromTH(cdata, true);
} else if (r.idx == 4) {
return new_with_tensor(type, r.tensor(0));
} else if (r.idx == 5) {
return new_from_sequence(type, r.toInt64(1), r.pyobject(0));
}
throw std::runtime_error("new(): invalid arguments");
}
}} // namespace torch::utils