mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38257 It seems we're doing a runtime type check for custom classes on each operator call if the operator has custom class arguments. This does not have an effect on operators without custom class arguments, but this is a problem for operators with custom class arguments, for example operators taking a at::native::xnnpack::Conv2dOpContext argument. The long term solution would be to move those checks to op registration time instead of doing them at call time, but as an intermediate fix, we can at least make the check fast by - Using ska::flat_hash_map instead of std::unordered_map - Using std::type_index instead of std::string (i.e. avoid calling std::hash on a std::string) ghstack-source-id: 106805209 Test Plan: waitforsandcastle Reviewed By: ezyang Differential Revision: D21507226 fbshipit-source-id: bd120d5574734be843c197673ea4222599fee7cb
296 lines
12 KiB
C++
296 lines
12 KiB
C++
#pragma once
|
|
|
|
#include <ATen/core/stack.h>
|
|
#include <ATen/core/builtin_function.h>
|
|
#include <ATen/core/function_schema.h>
|
|
#include <ATen/core/ivalue.h>
|
|
#include <ATen/core/jit_type.h>
|
|
#include <ATen/core/op_registration/infer_schema.h>
|
|
#include <ATen/core/stack.h>
|
|
#include <c10/util/C++17.h>
|
|
#include <c10/util/Metaprogramming.h>
|
|
#include <c10/util/TypeList.h>
|
|
#include <c10/util/TypeTraits.h>
|
|
#include <torch/library.h>
|
|
#include <torch/custom_class_detail.h>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
namespace torch {
|
|
|
|
/// This function is used in conjunction with `class_::def()` to register
|
|
/// a constructor for a given C++ class type. For example,
|
|
/// `torch::init<int, std::string>()` would register a two-argument constructor
|
|
/// taking an `int` and a `std::string` as argument.
|
|
template <class... Types>
|
|
detail::types<void, Types...> init() {
|
|
return detail::types<void, Types...>{};
|
|
}
|
|
|
|
/// Entry point for custom C++ class registration. To register a C++ class
|
|
/// in PyTorch, instantiate `torch::class_` with the desired class as the
|
|
/// template parameter. Typically, this instantiation should be done in
|
|
/// the initialization of a global variable, so that the class will be
|
|
/// made available on dynamic library loading without any additional API
|
|
/// calls needed. For example, to register a class named Foo, you might
|
|
/// create a global variable like so:
|
|
///
|
|
/// static auto register_foo = torch::class_<Foo>("myclasses", "Foo")
|
|
/// .def("myMethod", &Foo::myMethod)
|
|
/// .def("lambdaMethod", [](const c10::intrusive_ptr<Foo>& self) {
|
|
/// // Do something with `self`
|
|
/// });
|
|
///
|
|
/// In addition to registering the class, this registration also chains
|
|
/// `def()` calls to register methods. `myMethod()` is registered with
|
|
/// a pointer to the Foo class's `myMethod()` method. `lambdaMethod()`
|
|
/// is registered with a C++ lambda expression.
|
|
template <class CurClass>
|
|
class class_ {
|
|
static_assert(std::is_base_of<CustomClassHolder, CurClass>::value,
|
|
"torch::class_<T> requires T to inherit from CustomClassHolder");
|
|
|
|
public:
|
|
/// This constructor actually registers the class type.
|
|
/// String argument `namespaceName` is an identifier for the
|
|
/// namespace you would like this class to appear in.
|
|
/// String argument `className` is the name you would like to
|
|
/// see this class exposed as in Python and TorchScript. For example, if
|
|
/// you pass `foo` as the namespace name and `Bar` as the className, the
|
|
/// class will appear as `torch.classes.foo.Bar` in Python and TorchScript
|
|
explicit class_(const std::string& namespaceName, const std::string& className) {
|
|
detail::checkValidIdent(namespaceName, "Namespace name");
|
|
detail::checkValidIdent(className, "Class name");
|
|
qualClassName = std::string("__torch__.torch.classes.") + namespaceName + "." + className;
|
|
|
|
classTypePtr = at::ClassType::create(
|
|
c10::QualifiedName(qualClassName),
|
|
std::weak_ptr<jit::CompilationUnit>());
|
|
classTypePtr->addAttribute("capsule", at::CapsuleType::get());
|
|
|
|
c10::getCustomClassTypeMap().insert(
|
|
{std::type_index(typeid(c10::intrusive_ptr<CurClass>)), classTypePtr});
|
|
c10::getCustomClassTypeMap().insert(
|
|
{std::type_index(typeid(c10::tagged_capsule<CurClass>)), classTypePtr});
|
|
|
|
registerCustomClass(classTypePtr);
|
|
}
|
|
|
|
/// def() can be used in conjunction with `torch::init()` to register
|
|
/// a constructor for a given C++ class type. For example, passing
|
|
/// `torch::init<int, std::string>()` would register a two-argument constructor
|
|
/// taking an `int` and a `std::string` as argument.
|
|
template <typename... Types>
|
|
class_& def(detail::types<void, Types...>) { // Used in combination with
|
|
// torch::init<...>()
|
|
auto func = [](c10::tagged_capsule<CurClass> self, Types... args) {
|
|
auto classObj = c10::make_intrusive<CurClass>(args...);
|
|
auto object = self.ivalue.toObject();
|
|
object->setSlot(0, c10::IValue::make_capsule(std::move(classObj)));
|
|
};
|
|
|
|
defineMethod("__init__", std::move(func));
|
|
return *this;
|
|
}
|
|
|
|
/// This is the normal method registration API. `name` is the name that
|
|
/// the method will be made accessible by in Python and TorchScript.
|
|
/// `f` is a callable object that defines the method. Typically `f`
|
|
/// will either be a pointer to a method on `CurClass`, or a lambda
|
|
/// expression that takes a `c10::intrusive_ptr<CurClass>` as the first
|
|
/// argument (emulating a `this` argument in a C++ method.)
|
|
///
|
|
/// Examples:
|
|
///
|
|
/// // Exposes method `foo` on C++ class `Foo` as `call_foo()` in
|
|
/// // Python and TorchScript
|
|
/// .def("call_foo", &Foo::foo)
|
|
///
|
|
/// // Exposes the given lambda expression as method `call_lambda()`
|
|
/// // in Python and TorchScript.
|
|
/// .def("call_lambda", [](const c10::intrusive_ptr<Foo>& self) {
|
|
/// // do something
|
|
/// })
|
|
template <typename Func>
|
|
class_& def(std::string name, Func f) {
|
|
auto wrapped_f = detail::wrap_func<CurClass, Func>(std::move(f));
|
|
defineMethod(std::move(name), std::move(wrapped_f));
|
|
return *this;
|
|
}
|
|
|
|
/// This is an unsafe method registration API added for adding custom JIT backend support via custom
|
|
/// C++ classes. It is not for general purpose use.
|
|
class_& _def_unboxed(std::string name, std::function<void(jit::Stack&)> func, c10::FunctionSchema schema) {
|
|
auto qualMethodName = qualClassName + "." + name;
|
|
auto method = std::make_unique<jit::BuiltinOpFunction>(
|
|
qualMethodName, std::move(schema), std::move(func));
|
|
classTypePtr->addMethod(method.get());
|
|
registerCustomClassMethod(std::move(method));
|
|
return *this;
|
|
}
|
|
|
|
/// def_pickle() is used to define exactly what state gets serialized
|
|
/// or deserialized for a given instance of a custom C++ class in
|
|
/// Python or TorchScript. This protocol is equivalent to the Pickle
|
|
/// concept of `__getstate__` and `__setstate__` from Python
|
|
/// (https://docs.python.org/2/library/pickle.html#object.__getstate__)
|
|
///
|
|
/// Currently, both the `get_state` and `set_state` callables must be
|
|
/// C++ lambda expressions. They should have the following signatures,
|
|
/// where `CurClass` is the class you're registering and `T` is some object
|
|
/// that encapsulates the state of the object.
|
|
///
|
|
/// __getstate__(intrusive_ptr<CurClass>) -> T
|
|
/// __setstate__(T) -> intrusive_ptr<CurClass>
|
|
///
|
|
/// `T` must be an object that is convertable to IValue by the same rules
|
|
/// for custom op/method registration.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// .def_pickle(
|
|
/// // __getstate__
|
|
/// [](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
|
|
/// return self->stack_;
|
|
/// },
|
|
/// [](std::vector<std::string> state) { // __setstate__
|
|
/// return c10::make_intrusive<MyStackClass<std::string>>(
|
|
/// std::vector<std::string>{"i", "was", "deserialized"});
|
|
/// })
|
|
template <typename GetStateFn, typename SetStateFn>
|
|
class_& def_pickle(GetStateFn&& get_state, SetStateFn&& set_state) {
|
|
static_assert(
|
|
c10::guts::is_stateless_lambda<std::decay_t<GetStateFn>>::value &&
|
|
c10::guts::is_stateless_lambda<std::decay_t<SetStateFn>>::value,
|
|
"def_pickle() currently only supports lambdas as "
|
|
"__getstate__ and __setstate__ arguments.");
|
|
def("__getstate__", std::forward<GetStateFn>(get_state));
|
|
|
|
// __setstate__ needs to be registered with some custom handling:
|
|
// We need to wrap the invocation of of the user-provided function
|
|
// such that we take the return value (i.e. c10::intrusive_ptr<CurrClass>)
|
|
// and assign it to the `capsule` attribute.
|
|
using SetStateTraits =
|
|
c10::guts::infer_function_traits_t<std::decay_t<SetStateFn>>;
|
|
using SetStateArg = typename c10::guts::typelist::head_t<
|
|
typename SetStateTraits::parameter_types>;
|
|
auto setstate_wrapper = [set_state = std::move(set_state)](
|
|
c10::tagged_capsule<CurClass> self,
|
|
SetStateArg&& arg) {
|
|
c10::intrusive_ptr<CurClass> classObj =
|
|
at::guts::invoke(set_state, std::forward<SetStateArg>(arg));
|
|
auto object = self.ivalue.toObject();
|
|
object->setSlot(0, c10::IValue::make_capsule(classObj));
|
|
};
|
|
defineMethod(
|
|
"__setstate__",
|
|
detail::wrap_func<CurClass, decltype(setstate_wrapper)>(
|
|
std::move(setstate_wrapper)));
|
|
|
|
// type validation
|
|
auto getstate_schema = classTypePtr->getMethod("__getstate__").getSchema();
|
|
auto format_getstate_schema = [&getstate_schema]() {
|
|
std::stringstream ss;
|
|
ss << getstate_schema;
|
|
return ss.str();
|
|
};
|
|
TORCH_CHECK(
|
|
getstate_schema.arguments().size() == 1,
|
|
"__getstate__ should take exactly one argument: self. Got: ",
|
|
format_getstate_schema());
|
|
auto first_arg_type = getstate_schema.arguments().at(0).type();
|
|
TORCH_CHECK(
|
|
*first_arg_type == *classTypePtr,
|
|
"self argument of __getstate__ must be the custom class type. Got ",
|
|
first_arg_type->repr_str());
|
|
TORCH_CHECK(
|
|
getstate_schema.returns().size() == 1,
|
|
"__getstate__ should return exactly one value for serialization. Got: ",
|
|
format_getstate_schema());
|
|
auto ser_type = getstate_schema.returns().at(0).type();
|
|
auto setstate_schema = classTypePtr->getMethod("__setstate__").getSchema();
|
|
auto arg_type = setstate_schema.arguments().at(1).type();
|
|
TORCH_CHECK(
|
|
(*arg_type == *ser_type),
|
|
"__setstate__'s argument should be the same type as the "
|
|
"return value of __getstate__. Got ",
|
|
arg_type->repr_str(),
|
|
" but expected ",
|
|
ser_type->repr_str());
|
|
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
template <typename Func>
|
|
void defineMethod(std::string name, Func func) {
|
|
auto qualMethodName = qualClassName + "." + name;
|
|
auto schema = c10::inferFunctionSchemaSingleReturn<Func>(std::move(name), "");
|
|
|
|
auto wrapped_func = [func = std::move(func)](jit::Stack& stack) mutable -> void {
|
|
// TODO: we need to figure out how to profile calls to custom functions
|
|
// like this! Currently can't do it because the profiler stuff is in
|
|
// libtorch and not ATen
|
|
using RetType =
|
|
typename c10::guts::infer_function_traits_t<Func>::return_type;
|
|
detail::BoxedProxy<RetType, Func>()(stack, func);
|
|
};
|
|
auto method = std::make_unique<jit::BuiltinOpFunction>(
|
|
qualMethodName, std::move(schema), std::move(wrapped_func));
|
|
|
|
// Register the method here to keep the Method alive.
|
|
// ClassTypes do not hold ownership of their methods (normally it
|
|
// those are held by the CompilationUnit), so we need a proxy for
|
|
// that behavior here.
|
|
classTypePtr->addMethod(method.get());
|
|
registerCustomClassMethod(std::move(method));
|
|
}
|
|
|
|
std::string qualClassName;
|
|
at::ClassTypePtr classTypePtr;
|
|
};
|
|
|
|
/// make_custom_class() is a convenient way to create an instance of a registered
|
|
/// custom class and wrap it in an IValue, for example when you want to pass the
|
|
/// object to TorchScript. Its syntax is equivalent to APIs like `std::make_shared<>`
|
|
/// or `c10::make_intrusive<>`.
|
|
///
|
|
/// For example, if you have a custom C++ class that can be constructed from an `int`
|
|
/// and `std::string`, you might use this API like so:
|
|
///
|
|
/// IValue custom_class_iv = torch::make_custom_class<MyClass>(3, "foobarbaz");
|
|
template <typename CurClass, typename... CtorArgs>
|
|
c10::IValue make_custom_class(CtorArgs&&... args) {
|
|
if (!c10::isCustomClassRegistered<c10::intrusive_ptr<CurClass>>()) {
|
|
throw c10::Error(
|
|
"Trying to instantiate a class that isn't a registered custom class.",
|
|
"");
|
|
}
|
|
auto userClassInstance = c10::make_intrusive<CurClass>(std::forward<CtorArgs>(args)...);
|
|
return c10::IValue(std::move(userClassInstance));
|
|
}
|
|
|
|
// jit namespace for backward-compatibility
|
|
// We previously defined everything in torch::jit but moved it out to
|
|
// better reflect that these features are not limited only to TorchScript
|
|
namespace jit {
|
|
|
|
using ::torch::getCustomClass;
|
|
using ::torch::isCustomClass;
|
|
using ::torch::init;
|
|
using ::torch::class_;
|
|
|
|
} // namespace jit
|
|
|
|
template <class CurClass>
|
|
inline class_<CurClass> Library::class_(const std::string& className) {
|
|
TORCH_CHECK(kind_ == DEF || kind_ == FRAGMENT,
|
|
"class_(\"", className, "\"): Cannot define a class inside of a TORCH_LIBRARY_IMPL block. "
|
|
"All class_()s should be placed in the (unique) TORCH_LIBRARY block for their namespace. "
|
|
"(Error occurred at ", file_, ":", line_, ")");
|
|
TORCH_INTERNAL_ASSERT(ns_.has_value(), file_, ":", line_);
|
|
return torch::class_<CurClass>(*ns_, className);
|
|
}
|
|
|
|
}
|