pytorch/test/cpp/api
Will Feng d7462dcea6 Fix AdaptiveAvgPool{2,3}d and AdaptiveMaxPool{2,3}d implementation (#35022)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35022

This PR fixes `AdaptiveAvgPool{2,3}d` and `AdaptiveMaxPool{2,3}d` implementation to match the Python API implementation. Particularly, `output_size` is changed to accept `c10::nullopt` in its elements, matching the Python API behavior.

**TODO**: cherry-pick this PR into v1.5 release branch.

Test Plan: Imported from OSS

Differential Revision: D20559890

Pulled By: yf225

fbshipit-source-id: ccddbd278dd39165cf1dda11fc0e49387c76dbef
2020-03-20 22:36:57 -07:00
..
any.cpp [C++ API] Allow skipping default arguments in module's forward method when module is used in Sequential (#33027) 2020-02-17 20:38:02 -08:00
autograd.cpp [autograd] fix allow_unused checking for C++ API (#34035) 2020-03-02 17:57:15 -08:00
CMakeLists.txt Remove using namespace torch::autograd from header files (#34423) 2020-03-09 10:31:21 -07:00
dataloader.cpp Fix typos (#30606) 2019-12-02 20:17:42 -08:00
dispatch.cpp Add the build for runtime dispatch for AVX, AVX2 instruction set (#26125) 2020-03-10 15:32:57 -07:00
enum.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
expanding-array.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
functional.cpp Fix torch::allclose to handle std::numeric_limits<T>::lowest() for integral types (#32978) 2020-02-04 19:06:52 -08:00
init_baseline.h
init_baseline.py
init.cpp [C++ API] Remove deprecated torch::nn::BatchNorm / FeatureDropout / modules_ordered_dict and torch::nn::init::Nonlinearity / FanMode (#34508) 2020-03-12 10:09:58 -07:00
integration.cpp [C++ API] Remove deprecated torch::nn::BatchNorm / FeatureDropout / modules_ordered_dict and torch::nn::init::Nonlinearity / FanMode (#34508) 2020-03-12 10:09:58 -07:00
jit.cpp Remove attempToRecoverType (#26767) 2019-10-16 11:07:13 -07:00
memory.cpp
misc.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
module.cpp Remove dead includes in caffe2/test 2020-01-21 11:30:34 -08:00
modulelist.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
modules.cpp Fix AdaptiveAvgPool{2,3}d and AdaptiveMaxPool{2,3}d implementation (#35022) 2020-03-20 22:36:57 -07:00
namespace.cpp Remove using namespace torch::autograd from header files (#34423) 2020-03-09 10:31:21 -07:00
nn_utils.cpp [C++ API] Add PackedSequence / pack_padded_sequence / pad_packed_sequence / pack_sequence (#33652) 2020-02-25 12:53:41 -08:00
optim_baseline.h [C++ API Parity] LBFGS optimizer step() update and added closure to the Optimizer step() function (#34564) 2020-03-17 22:27:24 -07:00
optim_baseline.py [C++ API Parity] LBFGS optimizer step() update and added closure to the Optimizer step() function (#34564) 2020-03-17 22:27:24 -07:00
optim.cpp [C++ API Parity] Add xor_convergence test for lbfgs (#35001) 2020-03-20 06:57:24 -07:00
ordered_dict.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
parallel.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
README.md
rnn.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
sequential.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
serialize.cpp Revert D20518647: [pytorch][PR] [C++ API Parity] [Optimizers] Merged Optimizer and LossClosureOptimizer 2020-03-19 07:53:43 -07:00
static.cpp Re-organize C++ API torch::nn folder structure (#26262) 2019-09-17 10:07:29 -07:00
support.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
support.h C++ tensor indexing: more indexing tests (#30427) 2020-02-28 22:07:41 -08:00
tensor_cuda.cpp Fix MagmaInitializesCorrectly_CUDA by using an invertible matrix (#32547) 2020-01-25 20:00:54 -08:00
tensor_indexing.cpp [C++ API] Remove init-list form of at::indexing::Slice (#34255) 2020-03-06 05:51:53 -08:00
tensor_options_cuda.cpp Deprecate tensor.type() (#30281) 2019-12-05 10:55:34 -08:00
tensor_options.cpp Deprecate tensor.type() (#30281) 2019-12-05 10:55:34 -08:00
tensor.cpp Bug fixes: torch::tensor(floating-point values) -> default dtype, and torch::tensor(integer values) ->at::kLong (#32367) 2020-02-01 15:00:07 -08:00
torch_include.cpp Relax set_num_threads restriction in parallel native case (#27947) 2019-10-16 21:53:36 -07:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.