pytorch/test/cpp/api/serialize.cpp
Peter Goldsborough d712a71741 Protobuf serialization (#11619)
Summary:
This PR serves two purposes:

1. Design an abstraction over a serialization scheme for C++ modules, optimizers and tensors in general,
2. Add serialization to the ONNX/PyTorch proto format.

This is currently a rough prototype I coded up today, to get quick feedback.

For this I propose the following serialization interface within the C++ API:

```cpp
namespace torch { namespace serialize {
class Reader {
 public:
  virtual ~Reader() = default;
  virtual void read(const std::string& key, Tensor& tensor, bool is_buffer = false) = 0;
  virtual void finish() { }
};

class Writer {
 public:
  virtual ~Reader() = default;
  virtual void writer(const std::string& key, const Tensor& tensor, bool is_buffer = false) = 0;
  virtual void finish() { }
};
}} // namespace torch::serialize
```

There are then subclasses of these two for (1) Cereal and (2) Protobuf (called the "DefaultWriter" and "DefaultReader" to hide the implementation details). See `torch/serialize/cereal.h` and `torch/serialize/default.h`. This abstraction and subclassing for these two allows us to:

1. Provide a cereal-less serialization forward that we can ship and iterate on going forward,
2. Provide no-friction backwards compatibility with existing C++ API uses, mainly StarCraft.

The user-facing API is (conceptually):

```cpp
void torch::save(const Module& module, Writer& writer);
void torch::save(const Optimizer& optimizer, Writer& writer);
void torch::read(Module& module, Reader& reader);
void torch::read(Optimizer& optimizer, Reader& reader);
```

with implementations for both optimizers and modules that write into the `Writer` and read from the `Reader`

ebetica ezyang zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11619

Differential Revision: D9984664

Pulled By: goldsborough

fbshipit-source-id: e03afaa646221546e7f93bb8dfe3558e384a5847
2018-09-20 20:39:34 -07:00

247 lines
6.9 KiB
C++

#include <test/cpp/api/catch_utils.hpp>
#include <torch/nn/modules/functional.h>
#include <torch/nn/modules/linear.h>
#include <torch/nn/modules/sequential.h>
#include <torch/optim/optimizer.h>
#include <torch/optim/sgd.h>
#include <torch/serialize.h>
#include <torch/tensor.h>
#include <torch/utils.h>
#include <test/cpp/api/util.h>
#include <cstdio>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
using namespace torch::nn;
using namespace torch::serialize;
namespace {
Sequential xor_model() {
return Sequential(
Linear(2, 8),
Functional(at::sigmoid),
Linear(8, 1),
Functional(at::sigmoid));
}
torch::Tensor save_and_load(torch::Tensor input) {
torch::test::TempFile tempfile;
torch::save(input, tempfile.str());
return torch::load(tempfile.str());
}
} // namespace
CATCH_TEST_CASE("Serialize/Default/Basic") {
torch::manual_seed(0);
auto x = torch::randn({5, 5});
auto y = save_and_load(x);
CATCH_REQUIRE(y.defined());
CATCH_REQUIRE(x.sizes().vec() == y.sizes().vec());
CATCH_REQUIRE(x.allclose(y));
}
CATCH_TEST_CASE("Serialize/Default/Resized") {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x.resize_({5, 5});
auto y = save_and_load(x);
CATCH_REQUIRE(y.defined());
CATCH_REQUIRE(x.sizes().vec() == y.sizes().vec());
CATCH_REQUIRE(x.allclose(y));
}
CATCH_TEST_CASE("Serialize/Default/Sliced") {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x = x.slice(0, 1, 5);
auto y = save_and_load(x);
CATCH_REQUIRE(y.defined());
CATCH_REQUIRE(x.sizes().vec() == y.sizes().vec());
CATCH_REQUIRE(x.allclose(y));
}
CATCH_TEST_CASE("Serialize/Default/NonContiguous") {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x = x.slice(1, 1, 4);
auto y = save_and_load(x);
CATCH_REQUIRE(y.defined());
CATCH_REQUIRE(x.sizes().vec() == y.sizes().vec());
CATCH_REQUIRE(x.allclose(y));
}
CATCH_TEST_CASE("Serialize/Default/XOR") {
// We better be able to save and load an XOR model!
auto getLoss = [](Sequential model, uint32_t batch_size) {
auto inputs = torch::empty({batch_size, 2});
auto labels = torch::empty({batch_size});
for (size_t i = 0; i < batch_size; i++) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].toCLong() ^ inputs[i][1].toCLong();
}
auto x = model->forward<torch::Tensor>(inputs);
return torch::binary_cross_entropy(x, labels);
};
auto model = xor_model();
auto model2 = xor_model();
auto model3 = xor_model();
auto optimizer = torch::optim::SGD(
model->parameters(),
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
1e-6));
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
torch::Tensor loss = getLoss(model, 4);
optimizer.zero_grad();
loss.backward();
optimizer.step();
running_loss = running_loss * 0.99 + loss.sum().toCFloat() * 0.01;
CATCH_REQUIRE(epoch < 3000);
epoch++;
}
torch::test::TempFile tempfile;
torch::save(model, tempfile.str());
torch::load(model2, tempfile.str());
auto loss = getLoss(model2, 100);
CATCH_REQUIRE(loss.toCFloat() < 0.1);
}
CATCH_TEST_CASE("Serialize/Default/Optim") {
auto model1 = Linear(5, 2);
auto model2 = Linear(5, 2);
auto model3 = Linear(5, 2);
// Models 1, 2, 3 will have the same parameters.
torch::test::TempFile model_tempfile;
torch::save(model1, model_tempfile.str());
torch::load(model2, model_tempfile.str());
torch::load(model3, model_tempfile.str());
auto param1 = model1->parameters();
auto param2 = model2->parameters();
auto param3 = model3->parameters();
for (const auto& p : param1) {
CATCH_REQUIRE(param1[p.key].allclose(param2[p.key]));
CATCH_REQUIRE(param2[p.key].allclose(param3[p.key]));
}
// Make some optimizers with momentum (and thus state)
auto optim1 = torch::optim::SGD(
model1->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim2 = torch::optim::SGD(
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim2_2 = torch::optim::SGD(
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim3 = torch::optim::SGD(
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim3_2 = torch::optim::SGD(
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
// Do 2 steps of model1
step(optim1, model1);
step(optim1, model1);
// Do 2 steps of model 2 without saving the optimizer
step(optim2, model2);
step(optim2_2, model2);
// Do 2 steps of model 3 while saving the optimizer
step(optim3, model3);
torch::test::TempFile optim_tempfile;
torch::save(optim3, optim_tempfile.str());
torch::load(optim3_2, optim_tempfile.str());
step(optim3_2, model3);
param1 = model1->parameters();
param2 = model2->parameters();
param3 = model3->parameters();
for (const auto& p : param1) {
const auto& name = p.key;
// Model 1 and 3 should be the same
CATCH_REQUIRE(
param1[name].norm().toCFloat() == param3[name].norm().toCFloat());
CATCH_REQUIRE(
param1[name].norm().toCFloat() != param2[name].norm().toCFloat());
}
}
CATCH_TEST_CASE("Serialize/Default/CUDA", "[cuda]") {
torch::manual_seed(0);
// We better be able to save and load a XOR model!
auto getLoss = [](Sequential model, uint32_t batch_size) {
auto inputs = torch::empty({batch_size, 2});
auto labels = torch::empty({batch_size});
for (size_t i = 0; i < batch_size; i++) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].toCLong() ^ inputs[i][1].toCLong();
}
auto x = model->forward<torch::Tensor>(inputs);
return torch::binary_cross_entropy(x, labels);
};
auto model = xor_model();
auto model2 = xor_model();
auto model3 = xor_model();
auto optimizer = torch::optim::SGD(
model->parameters(),
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
1e-6));
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
torch::Tensor loss = getLoss(model, 4);
optimizer.zero_grad();
loss.backward();
optimizer.step();
running_loss = running_loss * 0.99 + loss.sum().toCFloat() * 0.01;
CATCH_REQUIRE(epoch < 3000);
epoch++;
}
torch::test::TempFile tempfile;
torch::save(model, tempfile.str());
torch::load(model2, tempfile.str());
auto loss = getLoss(model2, 100);
CATCH_REQUIRE(loss.toCFloat() < 0.1);
model2->to(torch::kCUDA);
torch::test::TempFile tempfile2;
torch::save(model2, tempfile2.str());
torch::load(model3, tempfile2.str());
loss = getLoss(model3, 100);
CATCH_REQUIRE(loss.toCFloat() < 0.1);
}