pytorch/torch/csrc/utils/variadic.h
Edward Yang 517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00

198 lines
5.8 KiB
C++

#pragma once
#include <ATen/ATen.h>
#include <torch/csrc/autograd/variable.h>
#include <cstdint>
#include <tuple>
#include <type_traits>
#include <utility>
namespace torch {
// This class allows you to write variadic functions which
// call a (possibly overloaded) function on each argument,
// in order. This is most commonly used in autogenerated code,
// where it is convenient to have a function that can uniformly
// take arguments of different types. If your arguments
// are homogenous consider using a std::initializer_list instead.
template <typename F>
struct IterArgs {
template <typename... Args>
inline F& apply() {
return self();
}
// NB: Use perfect forwarding here, otherwise we'll make value
// copies of all arguments!
template <typename T, typename... Args>
inline F& apply(T&& arg, Args&&... args) {
self()(std::forward<T>(arg));
if (self().short_circuit()) {
return self();
} else {
return apply(std::forward<Args>(args)...);
}
}
// Here are some handy overloads which provide sensible
// defaults for container-like structures that one might
// be interested in recursing into. You can enable them
// by adding:
//
// using IterArgs<YourStructName>::operator()
//
// to your struct. These are not enabled by default because
// you may be able to process these structures more efficiently
// than handling them one-by-one.
template <typename T>
void operator()(at::ArrayRef<T> args) {
for (const auto& arg : args) {
self()(arg);
if (short_circuit())
return;
}
}
// NB: we need to specify std::vector manually as C++ won't
// do an implicit conversion to make a template deduction go through.
template <typename T>
void operator()(const std::vector<T>& args) {
self()(at::ArrayRef<T>{args});
}
bool short_circuit() {
return false;
}
private:
inline F& self() {
return *static_cast<F*>(this);
}
};
struct CountTensors : IterArgs<CountTensors> {
size_t out = 0;
void operator()(const at::Tensor& x) {
out += 1;
}
void operator()(at::ArrayRef<at::Tensor> xs) {
out += xs.size();
}
};
template <typename... Args>
size_t count_tensors(Args&&... args) {
return CountTensors().apply(std::forward<Args>(args)...).out;
}
struct CountVariables : IterArgs<CountVariables> {
size_t out = 0;
void operator()(const autograd::Variable& x) {
out += 1;
}
void operator()(at::ArrayRef<autograd::Variable> xs) {
out += xs.size();
}
};
template <typename... Args>
inline size_t count_variables(Args&&... args) {
return CountVariables().apply(std::forward<Args>(args)...).out;
}
//===----------------------------------------------------------------------===//
// std::index_sequence shim for C++11
//===----------------------------------------------------------------------===//
// A container of type-template parameter indices.
template <size_t... Is>
struct Indices {};
// Decrements the index N, adds N-1 to the list of indices and forwards
// whatever we arleady have.
template <size_t N, size_t... Is>
struct MakeIndices : MakeIndices<N - 1, N - 1, Is...> {};
// Partial specialization that forms our base case. When N is zero, we stop
// and define a typedef that will be visible to earlier classes due to
// inheritance. The typedef we define is an index list containing the numbers
// 0 through N-1.
template <size_t... Is>
struct MakeIndices<0, Is...> {
using indices = Indices<Is...>;
};
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
template <bool value, typename T = void>
using enable_if_t = typename std::enable_if<value, T>::type;
template <bool value, typename T = void>
using disable_if_t = enable_if_t<!value, T>;
template <typename T>
using decay_t = typename std::decay<T>::type;
namespace detail {
template <bool...>
struct pack;
} // namespace detail
template <bool... values>
struct all_of : std::is_same<
detail::pack<values..., true>,
detail::pack<true, values...>> {};
template <bool...>
struct any_of;
template <>
struct any_of<> : std::false_type {};
template <bool head, bool... tail>
struct any_of<head, tail...> {
static constexpr bool value = head || any_of<tail...>::value;
};
template <bool... values>
struct none_of {
static constexpr bool value = !any_of<values...>::value;
};
template <bool... values>
using enable_if_all_of_t = enable_if_t<all_of<values...>::value>;
template <typename T, typename... Ts>
using disable_if_contains_t =
enable_if_all_of_t<(!std::is_same<T, decay_t<Ts>>::value)...>;
template <typename Function, typename... Ts>
void apply(Function function, Ts&&... ts) {
// https://stackoverflow.com/questions/13978916/inserting-a-variadic-argument-list-into-a-vector
// Creates a dummy array, so that each function call is evaluated in order.
// `(function(), 0)` is because `function` should (!) return `void`, so
// according to the comma operator, it is evaluated and its result (`void`)
// is discarded. Then the zero is evaluated and used as an element in the
// array. The first zero ensures the array is not empty.
int _[]{0, (function(std::forward<Ts>(ts)), 0)...};
(void)_;
}
template <typename ReturnType, typename... Ts, typename Function, typename Accessor>
ReturnType unpack(Function function, Accessor accessor) {
return ReturnType(unpack<ReturnType, Ts...>(
std::move(function),
std::move(accessor),
typename MakeIndices<sizeof...(Ts)>::indices()));
}
template <typename ReturnType, typename... Ts, typename Function, typename Accessor, size_t... Is>
ReturnType unpack(Function function, Accessor accessor, Indices<Is...>) {
return ReturnType(function(accessor.template operator()<Ts>(Is)...));
}
} // namespace torch