pytorch/tools/codegen/api/cpp.py
Edward Yang 8d5c899b19 Rename legacy_dispatcher to native. (#45974)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45974

The term "legacy dispatcher" caused a bunch of confusion between
me and Sebastian when discussing what the intended semantics of
legacy dispatcher argument is.  Legacy dispatcher argument implies
that you ought NOT to use it when you have use_c10_dispatcher: full;
but that's not really what's going on; legacy dispatcher API describes
the API that you write native:: functions (NativeFunctions.h) to.
Renaming it here makes this more clear.

I applied these seds:

```
git grep -l 'legacy_dispatcher' | xargs sed -i 's/legacy_dispatcher/native/g'
git grep -l 'legacydispatcher' | xargs sed -i 's/legacydispatcher/native/g'
git grep -l 'LegacyDispatcher' | xargs sed -i 's/LegacyDispatcher/Native/g'
```

and also grepped for "legacy" in tools/codegen and fixed documentation.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: smessmer

Differential Revision: D24223101

Pulled By: ezyang

fbshipit-source-id: d1913b8b823b3b95e4546881bc0e876acfa881eb
2020-10-13 08:34:43 -07:00

289 lines
10 KiB
Python

from tools.codegen.model import *
from tools.codegen.api.types import *
import tools.codegen.local as local
from typing import Optional, Sequence, Union, Callable, List
# This file describes the translation of JIT schema to the public C++
# API, which is what people use when they call functions like at::add.
#
# Prominent characteristics of the C++ API:
#
# - dtype, layout, device and pin_memory are collected into
# a single C++ type TensorOptions (the native functions API
# also has this, but tensor options is really most relevant
# for the C++ API; it makes calling kwarg factory functions
# pleasant)
#
# - for 'use_c10_dispatcher: full' functions, optional tensors are
# represented explicitly using c10::optional
#
# - defaulting lives here (in fact, the dispatcher is completely
# oblivious of defaults!)
#
# BTW: policy on name collisions: we try not to have types with
# collisions, but functions are fair game to collide
def name(func: FunctionSchema) -> str:
name = str(func.name.name)
if func.is_out_fn():
name += '_out'
return name
# Translation of "value types" in JIT schema to C++ API type. Value
# types look the same no matter if they are argument types are return
# types. Returns None if the type in question is not a value type.
def valuetype_type(t: Type) -> Optional[str]:
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
return None
elif t.name == BaseTy.int:
return 'int64_t'
elif t.name == BaseTy.float:
return 'double'
elif t.name == BaseTy.str:
return 'std::string'
elif t.name in [BaseTy.bool, BaseTy.QScheme, BaseTy.Scalar,
BaseTy.ScalarType, BaseTy.Generator, BaseTy.Storage,
BaseTy.Layout, BaseTy.Device, BaseTy.MemoryFormat,
BaseTy.Dimname, BaseTy.ConstQuantizerPtr]:
# These C++ names line up with their schema names
return t.name.name
else:
raise AssertionError(f"unsupported type: {t}")
elif isinstance(t, OptionalType):
elem = valuetype_type(t.elem)
if elem is None:
return None
return f"c10::optional<{elem}>"
elif isinstance(t, ListType):
if str(t.elem) == 'bool':
assert t.size is not None
return f"std::array<bool,{t.size}>"
else:
return None
else:
raise AssertionError(f"unrecognized type {repr(t)}")
# Translation of types occuring in JIT arguments to a C++ argument type.
def argumenttype_type(t: Type, *, mutable: bool) -> str:
# If it's a value type, do the value type translation
r = valuetype_type(t)
if r is not None:
return r
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
if mutable:
return 'Tensor &'
else:
return 'const Tensor &'
else:
raise AssertionError(f"base type should have been value type {t}")
elif isinstance(t, OptionalType):
if str(t.elem) == 'Tensor':
if mutable:
return 'Tensor &' # TODO: fix this discrepancy
else:
if local.use_c10_dispatcher().dispatcher_uses_new_style():
return 'const c10::optional<Tensor>&'
else:
return 'const Tensor &'
elem = argumenttype_type(t.elem, mutable=mutable)
return f"c10::optional<{elem}>"
elif isinstance(t, ListType):
# TODO: remove these special cases, ArrayRef fallthrough works fine
if str(t.elem) == 'int':
return "IntArrayRef"
elif str(t.elem) == 'Tensor':
return "TensorList"
elif str(t.elem) == 'Dimname':
return "DimnameList"
# TODO: do something reasonable about lists of optional tensors
elif (not local.use_c10_dispatcher().dispatcher_uses_new_style()) and str(t.elem) == 'Tensor?':
return "TensorList"
elem = argumenttype_type(t.elem, mutable=mutable)
# TODO: explicitly qualify namespace here
return f"ArrayRef<{elem}>"
else:
raise AssertionError(f"unrecognized type {repr(t)}")
# Translate a JIT argument into its C++ type
def argument_type(a: Argument) -> str:
return argumenttype_type(a.type, mutable=a.is_write)
# Translation of a (non-multi) return type from JIT to C++
def returntype_type(t: Type, *, mutable: bool) -> str:
r = valuetype_type(t)
if r is not None:
return r
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
if mutable:
return 'Tensor &'
else:
return 'Tensor'
elif isinstance(t, ListType):
elem = returntype_type(t.elem, mutable=mutable)
assert t.size is None, f"fixed size list returns not supported: {t}"
return f"std::vector<{elem}>"
raise AssertionError(f"unrecognized return type {t}")
# Translation of a single return to its C++ type
def return_type(r: Return) -> str:
return returntype_type(r.type, mutable=r.is_write)
# Translation of a full (possibly multi) return from JIT to its C++ type
def returns_type(rs: Sequence[Return]) -> str:
if len(rs) == 0:
return 'void'
elif len(rs) == 1:
return return_type(rs[0])
else:
args = ','.join(map(return_type, rs))
return f'std::tuple<{args}>'
JIT_TO_CPP_DEFAULT = {
'False': 'false',
'True': 'true',
'None': 'c10::nullopt', # UGH this one is type directed
'Mean': 'at::Reduction::Mean',
'[]': '{}',
'contiguous_format': 'MemoryFormat::Contiguous',
'long': 'at::kLong',
}
# Convert a JIT default into C++ expression representing the default
def default_expr(d: str, t: Type) -> str:
if d == 'None' and str(t) == 'Tensor?':
return '{}'
if isinstance(t, BaseType) and t.name is BaseTy.str:
# Schema allows single quotes but C++ needs double
if len(d) >= 2 and d[0] == "'" and d[-1] == "'":
s = ''
i = 1
while i + 1 < len(d):
if d[i] != '\\':
if d[i] == '"':
s += '\\"'
else:
s += d[i]
i += 1
else:
if d[i + 1] == "'":
s += "'"
else:
s += d[i:i + 2]
i += 2
return f'"{s}"'
if isinstance(t, OptionalType):
if d == 'None':
return 'c10::nullopt'
return default_expr(d, t.elem)
if isinstance(t, ListType):
if (d.startswith('[') and d.endswith(']')):
return '{' + d[1:-1] + '}'
elif t.size is None:
# NOTE: Sized lists can have scalar defaults
raise ValueError(f"Expected a list default '[...]' but found: '{d}'")
return JIT_TO_CPP_DEFAULT.get(d, d)
# Convert an argument into its C++ API form
def argument_not_this(
a: Union[Argument, TensorOptionsArguments],
) -> CppArgument:
if isinstance(a, Argument):
return CppArgument(
type=argument_type(a),
name=a.name,
default=default_expr(a.default, a.type) if a.default is not None else None,
argument=a,
)
elif isinstance(a, TensorOptionsArguments):
default = None
if all(x.default == "None" for x in a.all()):
default = '{}'
elif a.dtype.default == "long":
default = 'at::kLong' # TODO: this is wrong
return CppArgument(
type='const TensorOptions &',
name='options',
default=default,
argument=a,
)
else:
assert_never(a)
def argument(
a: Union[Argument, TensorOptionsArguments, ThisArgument],
) -> Union[CppSingleArgumentPack, CppThisArgumentPack]:
if isinstance(a, ThisArgument):
return CppThisArgumentPack(argument=a, type=argument_type(a.argument))
else:
return CppSingleArgumentPack(argument_not_this(a))
def argument_faithful(
a: Union[Argument, TensorOptionsArguments, ThisArgument],
) -> CppArgumentPack:
if isinstance(a, TensorOptionsArguments):
return CppTensorOptionsArgumentPack(
argument=a,
dtype=argument_not_this(a.dtype),
layout=argument_not_this(a.layout),
device=argument_not_this(a.device),
pin_memory=argument_not_this(a.pin_memory),
)
else:
return argument(a)
# NB: this unconditionally groups arguments
def group_arguments(
func: FunctionSchema, *, method: bool
) -> Sequence[Union[Argument, TensorOptionsArguments, ThisArgument]]:
args: List[Union[Argument, ThisArgument, TensorOptionsArguments]] = []
args.extend(func.out_arguments)
if method:
args.extend(ThisArgument(a) if a.name == "self" else a for a in func.arguments)
else:
args.extend(func.arguments)
# group up arguments for tensor options
def pred(name: str, ty: Type) -> Callable[[Argument], bool]:
return lambda a: a.name == name and a.type in [ty, OptionalType(ty)]
predicates = [ # order matters
pred('dtype', Type.parse('ScalarType')),
pred('layout', Type.parse('Layout')),
pred('device', Type.parse('Device')),
pred('pin_memory', Type.parse('bool')),
]
i = 0
while i < len(func.kwarg_only_arguments):
# If there is enough space...
if i <= len(func.kwarg_only_arguments) - len(predicates):
# And the next len(predicates) arguments look like TensorOptions arguments
if all(p(a) for p, a in zip(predicates, func.kwarg_only_arguments[i : i + len(predicates)])):
# Group them together as one argument
args.append(TensorOptionsArguments(
dtype=func.kwarg_only_arguments[i],
layout=func.kwarg_only_arguments[i + 1],
device=func.kwarg_only_arguments[i + 2],
pin_memory=func.kwarg_only_arguments[i + 3],
))
i += len(predicates)
continue
args.append(func.kwarg_only_arguments[i])
i += 1
return args