mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55462 handles and symbolicate exception callstack thrown from backend. Objective of this diff is to achieve improve error reporting when exceptions are raised from lowered backend. We would effectively like to get the same model level stack trace that you would get without having lowered some module to backend. For example: ``` class AA(nn.Module): def forward(self, x, y): return x + y class A(nn.Module): def __init__(...): self.AA0 = AA() def forward(self, x, y): return self.AA0.forward(x, y) + 3 class B(nn.Module): def forward(self, x): return x + 2 class C(nn.Module): def __init__(...): self.A0 = A() self.B0 = B() def forward(self, x, y): return self.A0.forward(x, y) + self.B0.forward(x) ``` If the we then do C().forward(torch.rand((2,3)), torch.rand(14,2))) we will likely see error stack like: ``` C++ exception with description "The following operation failed in the TorchScript interpreter. Traceback of TorchScript (most recent call last): File "<string>", line 3, in forward def forward(self, x, y): return self.A0.forward(x, y) + self.B0.forward(x) ~~~~~~~~~~~~~~~ <--- HERE File "<string>", line 3, in forward def forward(self, x, y): return self.AA0.forward(x, y) + 3 ~~~~~~~~~~~~~~~~ <--- HERE File "<string>", line 3, in forward def forward(self, x, y): return x + y ~~~~~ <--- HERE ``` We would like to see the same error stack if we lowered C.A0 to some backend. With this diff we get something like: ``` Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA) Traceback of TorchScript (most recent call last): File "<string>", line 3, in FunctionName_UNKNOWN def forward(self, x, y): return self.A0.forward(x, y) + self.B0.forward(x) ~~~~~~~~~~~~~~~ <--- HERE File "<string>", line 5, in FunctionName_UNKNOWN typed_inputs: List[Any] = [x, y, ] if self.__backend.is_available() : _0, = self.__backend.execute(self.__handles["forward"], typed_inputs) ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE assert isinstance(_0, Tensor) return _0 File "<string>", line 3, in FunctionName_UNKNOWN def forward(self, x, y): return self.AA0.forward(x, y) + 3 ~~~~~~~~~~~~~~~~ <--- HERE File "<string>", line 3, in FunctionName_UNKNOWN def forward(self, x, y): return x + y ~~~~~ <--- HERE ``` This is achieved in 3 parts: Part 1: A. BackendDebugInfoRecorder: During backend lowering, in `to_backend`, before calling the preprocess function corresponding to the backend. This will facilitate recording of debug info (such as source range + inlined callstack) for the lowered module. B. Instantiate WithBackendDebugInfoRecorder with BackendDebugInfoRecorder. This initializes thread local pointer to BackendDebugInfoRecorder. C. generate_debug_handles: In preprocess function, the backend will call generate_debug_handles for each method being lowered separately. generate_debug_handles takes `Graph` of the method being lowered and returns a map of Node*-to-debug_handles. Backend is responsible for storing debug handles appropriately so as to raise exception (and later profiling) using debug handles when the exception being raised corresponds to particular Node that was lowered. Inside generate_debug_handles, we will query the current BackendDebugHandleInfoRecorder, that is issuing debug handles. This debug handle manager will issue debug handles as well as record debug_handles-to-<source range, inlined callstack> map. D. Back in `to_backend`, once the preprocess function is has finished lowering the module, we will call `stopRecord` on BackendDebugInfoRecorder. This will return the debug info map. This debug info is then stored inside the lowered module. Part 2: Serialization: During serialization for bytecode (lite interpreter), we will do two things: 1. Extract all the source ranges that are contained inside debug_handles-to-<source range, inlined callstack> map for lowered module. This will be source range corresponding to debug handles, including what is there is inlined callstack. Since we replaced original module with lowered module, we wont be serializing code for the original module and thus no source range. That is why the source range will have to be stored separately. We will lump all the source ranges for all the lowered modules in one single debug_pkl file. 2. Then we will serialize debug_handles-to-<source range, inlined callstack> map. Now during deserialization we will be able to reconstruct debug_handles-to-<source range, inlined callstack> map. Given all debug_handles are unique we would not need any module information. Test Plan: Tests are added in test_backend.cpp Tests are added in test_backend.cpp Imported from OSS Differential Revision: D27621330 D27621330 Reviewed By: raziel Pulled By: kimishpatel fbshipit-source-id: 0650ec68cda0df0a945864658cab226a97ba1890
580 lines
20 KiB
C++
580 lines
20 KiB
C++
#include <gtest/gtest.h>
|
|
#include <test/cpp/jit/test_utils.h>
|
|
#include <torch/csrc/jit/api/module.h>
|
|
#include <torch/csrc/jit/backends/backend_detail.h>
|
|
#include <torch/csrc/jit/mobile/import.h>
|
|
#include <torch/csrc/jit/serialization/import.h>
|
|
#include <torch/torch.h>
|
|
|
|
// Tests go in torch::jit
|
|
namespace torch {
|
|
namespace jit {
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
TEST(BackendTest, ToBackend) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
return self.accum(x, h), self.sub_accum(x, h)
|
|
|
|
def accum(self, x, h):
|
|
return x + h
|
|
|
|
def sub_accum(self, x, h):
|
|
return x - h
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(2.0 * torch::ones({}));
|
|
inputs.emplace_back(1.0 * torch::ones({}));
|
|
auto ref = m.forward(inputs).toTuple()->elements();
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"test_backend", m, compile_spec, any_dict_ty);
|
|
// lowered module code:
|
|
/*
|
|
class test_backendLoweredModule(Module):
|
|
__parameters__ = []
|
|
__buffers__ = []
|
|
__processed_module : Any
|
|
__method_compile_spec : Dict[str, Any]
|
|
__backend : __torch__.torch.classes.__backends__.test_backend
|
|
__handles : Dict[str, Any]
|
|
def __create_backend(self: torch.jit.test_backendLoweredModule) -> None:
|
|
_0 =
|
|
__torch__.torch.classes.__backends__.test_backend.__new__(__torch__.torch.classes.__backends__.test_backend)
|
|
_1 = (_0).__init__()
|
|
self.__backend = _0
|
|
return None
|
|
def __getstate__(self: torch.jit.test_backendLoweredModule) ->
|
|
Tuple[Dict[str, Any], Any]: _2 = (self.__method_compile_spec,
|
|
self.__processed_module) return _2 def __setstate__(self:
|
|
torch.jit.test_backendLoweredModule, state: Tuple[Dict[str, Any], Any]) ->
|
|
None: self.__method_compile_spec = (state)[0] self.__processed_module =
|
|
(state)[1] _3 = (self).__create_backend() _4 =
|
|
(self.__backend).compile(self.__processed_module,
|
|
self.__method_compile_spec, ) self.__handles = _4 return None def
|
|
forward(self: torch.jit.test_backendLoweredModule, x: Tensor, h: Tensor) ->
|
|
Tuple[Tensor, Tensor]: _5 = uninitialized(Tensor) typed_inputs =
|
|
annotate(List[Any], [x, h]) _6 =
|
|
(self.__backend).execute((self.__handles)["forward"], typed_inputs, ) _7,
|
|
_8, = _6 _9 = isinstance(_7, Tensor) if _9: _10 = unchecked_cast(Tensor, _7)
|
|
else:
|
|
ops.prim.RaiseException("AssertionError: ")
|
|
_10 = _5
|
|
_11 = isinstance(_8, Tensor)
|
|
if _11:
|
|
_12 = unchecked_cast(Tensor, _8)
|
|
else:
|
|
ops.prim.RaiseException("AssertionError: ")
|
|
_12 = _5
|
|
return (_10, _12)
|
|
|
|
*/
|
|
auto res = lm.forward(inputs).toTuple()->elements();
|
|
AT_ASSERT(res[0].toTensor().equal(ref[0].toTensor()));
|
|
AT_ASSERT(res[1].toTensor().equal(ref[1].toTensor()));
|
|
}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
TEST(BackendTest, ToBackendNotAvailable) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
return self.accum(x, h), self.sub_accum(x, h)
|
|
|
|
def accum(self, x, h):
|
|
return x + h
|
|
|
|
def sub_accum(self, x, h):
|
|
return x - h
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(2.0 * torch::ones({}));
|
|
inputs.emplace_back(1.0 * torch::ones({}));
|
|
auto ref = m.forward(inputs).toTuple()->elements();
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// Produce lowered module (backend not available).
|
|
// Exception is not thrown at this point.
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"test_backend_unavailable", m, compile_spec, any_dict_ty);
|
|
// Validate exception is thrown when trying to execute and
|
|
// the backend is not available.
|
|
ASSERT_THROWS_WITH_MESSAGE(
|
|
lm.forward(inputs).toTuple()->elements(), "Backend is not available.");
|
|
}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
TEST(BackendTest, TestCompiler) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
return x + h
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(2.0 * torch::ones({}));
|
|
inputs.emplace_back(1.0 * torch::ones({}));
|
|
auto ref = m.forward(inputs);
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
|
|
auto res = lm.forward(inputs);
|
|
AT_ASSERT(res.toTensor().equal(ref.toTensor()));
|
|
|
|
std::stringstream ss;
|
|
lm._save_for_mobile(ss);
|
|
auto mlm = _load_for_mobile(ss);
|
|
auto mres = mlm.forward(inputs);
|
|
AT_ASSERT(mres.toTensor().equal(ref.toTensor()));
|
|
}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
|
TEST(BackendTest, TestCompilerNotSupport) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
return x * h
|
|
)");
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
ASSERT_THROWS_WITH_MESSAGE(
|
|
torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", m, compile_spec, any_dict_ty),
|
|
"The node of aten::mul is not supported in this compiler. Source code:");
|
|
}
|
|
|
|
TEST(BackendTestDebugInfo, TestCompiler) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
return x + h
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({2, 4}));
|
|
inputs.emplace_back(torch::rand({13, 9}));
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
|
|
|
|
std::stringstream ss;
|
|
lm._save_for_mobile(ss, ExtraFilesMap(), true);
|
|
auto mlm = _load_for_mobile(ss);
|
|
std::string error_pattern = R"(
|
|
Module hierarchy:top(backend_with_compiler_demoLoweredModule)
|
|
Traceback of TorchScript (most recent call last):
|
|
File "<string>", line 5, in FunctionName_UNKNOWN
|
|
typed_inputs: List[Any] = [x, h, ]
|
|
if self.__backend.is_available() :
|
|
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
|
|
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
assert isinstance(_0, Tensor)
|
|
return _0
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, h):
|
|
return x + h
|
|
~~~~~ <--- HERE
|
|
)";
|
|
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
|
|
}
|
|
|
|
TEST(BackendTestDebugInfo, TestExceptionStackForCompilerWithModuleHierarchy) {
|
|
Module a("A");
|
|
a.define(R"(
|
|
def forward(self, x, y):
|
|
return x + y
|
|
)");
|
|
Module b("B");
|
|
b.define(R"(
|
|
def forward(self, x):
|
|
return x + 2
|
|
)");
|
|
Module c("C");
|
|
c.register_module("A0", a);
|
|
c.register_module("B0", b);
|
|
c.define(R"(
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({2, 4}));
|
|
inputs.emplace_back(torch::rand({13, 9}));
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", c, compile_spec, any_dict_ty);
|
|
|
|
std::stringstream ss;
|
|
lm._save_for_mobile(ss, ExtraFilesMap(), true);
|
|
auto mlm = _load_for_mobile(ss);
|
|
std::string error_pattern = R"(
|
|
Module hierarchy:top(backend_with_compiler_demoLoweredModule).A0(A)
|
|
Traceback of TorchScript (most recent call last):
|
|
File "<string>", line 5, in FunctionName_UNKNOWN
|
|
typed_inputs: List[Any] = [x, y, ]
|
|
if self.__backend.is_available() :
|
|
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
|
|
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
assert isinstance(_0, Tensor)
|
|
return _0
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, y):
|
|
return x + y
|
|
~~~~~ <--- HERE
|
|
)";
|
|
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
|
|
}
|
|
|
|
TEST(
|
|
BackendTestDebugInfo,
|
|
TestExceptionStackForCompilerWithTwoLevelModuleHierarchy) {
|
|
Module a("A");
|
|
a.define(R"(
|
|
def forward(self, x, y):
|
|
return x + y
|
|
)");
|
|
Module b("B");
|
|
b.register_module("A0", a);
|
|
b.define(R"(
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + 2
|
|
)");
|
|
Module c("C");
|
|
c.register_module("B0", b);
|
|
c.define(R"(
|
|
def forward(self, x, y):
|
|
return self.B0.forward(x, y) + 3
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({2, 4}));
|
|
inputs.emplace_back(torch::rand({13, 9}));
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", c, compile_spec, any_dict_ty);
|
|
|
|
std::stringstream ss;
|
|
lm._save_for_mobile(ss, ExtraFilesMap(), true);
|
|
auto mlm = _load_for_mobile(ss);
|
|
/*
|
|
* Error stack throw will look like this:
|
|
* Module hierarchy:top(backend_with_compiler_demoLoweredModule).B0(B).A0(A)
|
|
* Traceback of TorchScript (most recent call last):
|
|
* File "<string>", line 5, in FunctionName_UNKNOWN
|
|
* typed_inputs: List[Any] = [x, y, ]
|
|
* if self.__backend.is_available() :
|
|
* _0, = self.__backend.execute(self.__handles["forward"],
|
|
* typed_inputs)
|
|
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
* assert isinstance(_0, Tensor)
|
|
* return _0
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return self.B0.forward(x, y) + 3
|
|
* ~~~~~~~~~~~~~~~ <--- HERE
|
|
*
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return self.A0.forward(x, y) + 2
|
|
* ~~~~~~~~~~~~~~~ <--- HERE
|
|
*
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return x + y
|
|
* ~~~~~ <--- HERE
|
|
*
|
|
*/
|
|
std::string error_pattern = R"(
|
|
Module hierarchy:top(backend_with_compiler_demoLoweredModule).B0(B).A0(A)
|
|
Traceback of TorchScript (most recent call last):
|
|
File "<string>", line 5, in FunctionName_UNKNOWN
|
|
typed_inputs: List[Any] = [x, y, ]
|
|
if self.__backend.is_available() :
|
|
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
|
|
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
assert isinstance(_0, Tensor)
|
|
return _0
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, y):
|
|
return self.B0.forward(x, y) + 3
|
|
~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + 2
|
|
~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, y):
|
|
return x + y
|
|
~~~~~ <--- HERE
|
|
)";
|
|
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
|
|
}
|
|
|
|
TEST(BackendTestDebugInfo, TestExceptionStackForCompilerWithLoweredSubModule) {
|
|
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
|
|
Module a("A");
|
|
a.define(R"(
|
|
def forward(self, x, y):
|
|
return x + y
|
|
)");
|
|
Module b("B");
|
|
b.define(R"(
|
|
def forward(self, x):
|
|
return x + 2
|
|
)");
|
|
Module c("C");
|
|
c.register_module("A0", a);
|
|
c.register_module("B0", b);
|
|
c.define(R"(
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({2, 4}));
|
|
inputs.emplace_back(torch::rand({13, 9}));
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
IValue submodule = c.attr("A0");
|
|
Module current_sm = submodule.toModule();
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lowered_submodule = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", current_sm, compile_spec, any_dict_ty);
|
|
|
|
c.type()->unsafeChangeAttributeType("A0", lowered_submodule.type());
|
|
c.setattr("A0", lowered_submodule._ivalue());
|
|
std::unordered_map<TypePtr, TypePtr> type_remap;
|
|
type_remap[a.type()] = lowered_submodule.type();
|
|
auto type_remap_fn = [&type_remap](TypePtr in) {
|
|
auto it = type_remap.find(in);
|
|
if (it == type_remap.end())
|
|
return in;
|
|
return it->second;
|
|
};
|
|
for (auto& fn : c.type()->methods()) {
|
|
auto method = c.get_method(fn->name());
|
|
auto graph = method.graph();
|
|
graph->remapTypes(type_remap_fn);
|
|
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
|
|
fn->setSchema(new_schema);
|
|
}
|
|
|
|
std::stringstream ss;
|
|
c._save_for_mobile(ss, ExtraFilesMap(), true);
|
|
auto c_loaded = _load_for_mobile(ss);
|
|
std::string error_pattern = R"(
|
|
Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule)
|
|
Traceback of TorchScript (most recent call last):
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 5, in FunctionName_UNKNOWN
|
|
typed_inputs: List[Any] = [x, y, ]
|
|
if self.__backend.is_available() :
|
|
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
|
|
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
assert isinstance(_0, Tensor)
|
|
return _0
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, y):
|
|
return x + y
|
|
~~~~~ <--- HERE
|
|
)";
|
|
ASSERT_THROWS_WITH_MESSAGE(c_loaded.forward(inputs), error_pattern);
|
|
}
|
|
|
|
TEST(
|
|
BackendTestDebugInfo,
|
|
TestExceptionStackForCompilerWithSelectiveLoweredSubModule) {
|
|
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
|
|
Module aa("AA");
|
|
aa.define(R"(
|
|
def forward(self, x, y):
|
|
return x + y
|
|
)");
|
|
Module a("A");
|
|
a.register_module("AA0", aa);
|
|
a.define(R"(
|
|
def forward(self, x, y):
|
|
return self.AA0.forward(x, y) + 3
|
|
)");
|
|
Module b("B");
|
|
b.define(R"(
|
|
def forward(self, x):
|
|
return x + 2
|
|
)");
|
|
Module c("C");
|
|
c.register_module("A0", a);
|
|
c.register_module("B0", b);
|
|
c.define(R"(
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({2, 4}));
|
|
inputs.emplace_back(torch::rand({13, 9}));
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
IValue submodule = c.attr("A0");
|
|
Module current_sm = submodule.toModule();
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lowered_submodule = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", current_sm, compile_spec, any_dict_ty);
|
|
|
|
c.type()->unsafeChangeAttributeType("A0", lowered_submodule.type());
|
|
c.setattr("A0", lowered_submodule._ivalue());
|
|
std::unordered_map<TypePtr, TypePtr> type_remap;
|
|
type_remap[a.type()] = lowered_submodule.type();
|
|
auto type_remap_fn = [&type_remap](TypePtr in) {
|
|
auto it = type_remap.find(in);
|
|
if (it == type_remap.end())
|
|
return in;
|
|
return it->second;
|
|
};
|
|
for (auto& fn : c.type()->methods()) {
|
|
auto method = c.get_method(fn->name());
|
|
auto graph = method.graph();
|
|
graph->remapTypes(type_remap_fn);
|
|
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
|
|
fn->setSchema(new_schema);
|
|
}
|
|
|
|
std::stringstream ss;
|
|
c._save_for_mobile(ss, ExtraFilesMap(), true);
|
|
auto c_loaded = _load_for_mobile(ss);
|
|
/*
|
|
* Erro stack trace will look like this:
|
|
* Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
|
|
* Traceback of TorchScript (most recent call last):
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return self.A0.forward(x, y) + self.B0.forward(x)
|
|
* ~~~~~~~~~~~~~~~ <--- HERE
|
|
*
|
|
* File "<string>", line 5, in FunctionName_UNKNOWN
|
|
* typed_inputs: List[Any] = [x, y, ]
|
|
* if self.__backend.is_available() :
|
|
* _0, = self.__backend.execute(self.__handles["forward"],
|
|
* typed_inputs)
|
|
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
* assert isinstance(_0, Tensor)
|
|
* return _0
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return self.AA0.forward(x, y) + 3
|
|
* ~~~~~~~~~~~~~~~~ <--- HERE
|
|
*
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return x + y
|
|
* ~~~~~ <--- HERE
|
|
*
|
|
*
|
|
* */
|
|
std::string error_pattern = R"(
|
|
Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
|
|
Traceback of TorchScript (most recent call last):
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 5, in FunctionName_UNKNOWN
|
|
typed_inputs: List[Any] = [x, y, ]
|
|
if self.__backend.is_available() :
|
|
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
|
|
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
assert isinstance(_0, Tensor)
|
|
return _0
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, y):
|
|
return self.AA0.forward(x, y) + 3
|
|
~~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 3, in FunctionName_UNKNOWN
|
|
|
|
def forward(self, x, y):
|
|
return x + y
|
|
~~~~~ <--- HERE
|
|
)";
|
|
ASSERT_THROWS_WITH_MESSAGE(c_loaded.forward(inputs), error_pattern);
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|