pytorch/torch/csrc/utils/tensor_new.cpp
Edward Yang d6c29b1d30 Deduplicate legacy _ctor and _new Python bindings (#73822)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73822

I guess hypothetically the logic duplication here is a faux
amis because we could say that the constructor and new method
should evolve APIs independently... but nah, it's not worth it.
There is only very slight differences between the two functions:
different error messages, and the new method does extra checks
to make sure the requested types are consistent with the base
Tensor.  But I need to refactor this code and I really don't want
to do the refactor twice.  So dedupe first.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: anjali411

Differential Revision: D34665171

Pulled By: ezyang

fbshipit-source-id: bd40ec7f6e694bfeff4e4aaab2f4e95cea250b65
(cherry picked from commit 10a03926d8d8f36506c9a3d62cf2c380f559b00b)
2022-03-08 00:56:55 +00:00

1114 lines
50 KiB
C++

#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/tensor_new.h>
#include <pybind11/pybind11.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Size.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/numpy_stub.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_scalars.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/tensor_numpy.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <ATen/ATen.h>
#include <ATen/DLConvertor.h>
#include <ATen/dlpack.h>
#include <ATen/InitialTensorOptions.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/TracerMode.h>
#include <c10/core/Backend.h>
#include <c10/core/DispatchKeySet.h>
#include <c10/core/Layout.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <c10/util/Optional.h>
#include <stdexcept>
#include <vector>
using at::Backend;
using at::Device;
using at::IntArrayRef;
using at::kCPU;
using at::kCUDA;
using at::kLong;
using at::kInt;
using at::Scalar;
using at::ScalarType;
using at::Storage;
using at::Tensor;
using at::TensorOptions;
using at::Type;
using c10::optional;
namespace torch { namespace utils {
namespace {
const int MAX_DIMS = 128;
TensorOptions build_options(c10::TensorOptions options, at::ScalarType scalar_type, const c10::optional<Device>& device=c10::nullopt) {
options = options.dtype(scalar_type);
if (device.has_value()) {
return options.device(device);
}
return options;
}
void maybe_initialize_cuda(const Device device) {
if (device.is_cuda()) {
torch::utils::cuda_lazy_init();
}
}
// NB: It appears there is some consistency invariant between options and device, where
// if device is non-empty, its type must be consistent with the device type in
// options.
// TODO: Refactor this so we just pass everything in via options
Tensor dispatch_ones(c10::TensorOptions options, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
maybe_initialize_cuda(options.device());
pybind11::gil_scoped_release no_gil;
return torch::ones(sizes, build_options(options, scalar_type, device));
}
Tensor new_with_sizes(c10::TensorOptions options, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
maybe_initialize_cuda(options.device());
pybind11::gil_scoped_release no_gil;
return torch::empty(sizes, build_options(options, scalar_type, device));
}
Tensor new_with_storage(c10::TensorOptions options, at::ScalarType scalar_type, Storage storage) {
auto tensor = at::empty({}, build_options(options, scalar_type));
tensor.set_(std::move(storage));
return tensor;
}
Tensor new_with_tensor(c10::TensorOptions options, at::ScalarType scalar_type, const Tensor& other) {
options = options.dtype(scalar_type);
TORCH_CHECK_TYPE(other.options().type_equal(options), "expected ",
options, " (got ", other.options(), ")");
return other.alias();
}
std::vector<int64_t> compute_sizes(PyObject* seq, ScalarType scalar_type) {
bool is_storage = isStorage(seq);
std::vector<int64_t> sizes;
THPObjectPtr handle;
while (PySequence_Check(seq)) {
auto length = PySequence_Length(seq);
if (length < 0) throw python_error();
if (is_storage) {
length /= elementSize(scalar_type);
}
sizes.push_back(length);
if (sizes.size() > MAX_DIMS) {
throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name);
}
if (length == 0) break;
handle = THPObjectPtr(PySequence_GetItem(seq, 0));
if (!handle) {
throw ValueError("could not determine the shape of object type '%s'", Py_TYPE(seq)->tp_name);
}
seq = handle.get();
}
return sizes;
}
ScalarType infer_scalar_type(PyObject *obj) {
#ifdef USE_NUMPY
if (is_numpy_available()) {
if (PyArray_Check(obj)) {
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*)obj));
}
if (PyArray_CheckScalar(obj)) {
THPObjectPtr arr(PyArray_FromScalar(obj, nullptr));
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*) arr.get()));
}
}
#endif
if (PyFloat_Check(obj)) {
// this is always guaranteed to be a floating-point type, and makes it more
// convenient to write e.g. torch.tensor(0.) than torch.tensor(0., dtype=torch.Tensor.dtype).
return torch::tensors::get_default_scalar_type();
}
if (THPUtils_checkLong(obj)) {
return ScalarType::Long;
}
if (PyBool_Check(obj)) {
return ScalarType::Bool;
}
if (PyComplex_Check(obj)) {
switch (torch::tensors::get_default_scalar_type()) {
case ScalarType::Float: return ScalarType::ComplexFloat;
case ScalarType::Double: return ScalarType::ComplexDouble;
default: TORCH_CHECK(false, "invalid default scalar type for complex");
}
}
if (THPVariable_Check(obj)) {
const auto& var = THPVariable_Unpack(obj);
return var.scalar_type();
}
if (THPUtils_checkString(obj)) {
throw TypeError("new(): invalid data type '%s'", Py_TYPE(obj)->tp_name);
}
if (PySequence_Check(obj)) {
c10::optional<ScalarType> scalarType;
auto length = PySequence_Length(obj);
if (length < 0) throw python_error();
// match NumPy semantics, except use default tensor type instead of double.
if (length == 0) return torch::tensors::get_default_scalar_type();
for (const auto i : c10::irange(length)) {
THPObjectPtr handle(PySequence_GetItem(obj, i));
if (!handle) throw python_error();
auto cur_item = handle.get();
if (cur_item == obj) throw TypeError("new(): self-referential lists are incompatible");
ScalarType item_scalarType = infer_scalar_type(cur_item);
scalarType = (scalarType) ?
at::promoteTypes(*scalarType, item_scalarType) : item_scalarType;
if (scalarType == ScalarType::ComplexDouble) {
// this won't change (unless we hit undefined, but that will fail later).
return *scalarType;
}
}
return *scalarType;
}
AT_ERROR("Could not infer dtype of ", Py_TYPE(obj)->tp_name);
}
void recursive_store(char* data, IntArrayRef sizes, IntArrayRef strides, int64_t dim,
ScalarType scalarType, int elementSize, PyObject* obj) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(data != nullptr);
int64_t ndim = sizes.size();
if (dim == ndim) {
torch::utils::store_scalar(data, scalarType, obj);
return;
}
auto n = sizes[dim];
auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence"));
if (!seq) throw python_error();
// NOLINTNEXTLINE(bugprone-branch-clone)
auto seq_size = PySequence_Fast_GET_SIZE(seq.get());
if (seq_size != n) {
throw ValueError("expected sequence of length %lld at dim %lld (got %lld)",
(long long)n, (long long)dim, (long long)seq_size);
}
PyObject** items = PySequence_Fast_ITEMS(seq.get());
for(const auto i : c10::irange(n)) {
#ifdef USE_NUMPY
if (is_numpy_available() && PyArray_Check(items[i])) {
TORCH_WARN_ONCE(
"Creating a tensor from a list of numpy.ndarrays is extremely slow. "
"Please consider converting the list to a single numpy.ndarray with "
"numpy.array() before converting to a tensor.");
}
#endif
recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]);
data += strides[dim] * elementSize;
}
}
Tensor internal_new_from_data(
c10::TensorOptions options,
at::ScalarType scalar_type,
c10::optional<Device> device_opt,
PyObject* data,
bool copy_variables,
bool copy_numpy,
bool type_inference,
bool pin_memory = false) {
if (THPUtils_checkString(data)) {
throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)->tp_name);
}
if (THPVariable_Check(data)) {
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from a variable");
// TODO: use MaybeOwned
auto var = THPVariable_Unpack(data);
if (copy_variables) {
var = var.detach();
}
// infer the scalar type and device type; it's not expected to infer the layout since these constructors
// are defined per-layout-type (e.g. tensor vs sparse_coo_tensor).
const auto& inferred_scalar_type = type_inference ? var.scalar_type() : scalar_type;
auto device = device_opt.has_value() ? *device_opt : var.device();
pybind11::gil_scoped_release no_gil;
maybe_initialize_cuda(device);
return var.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_variables);
}
#ifdef USE_NUMPY
if (PyObject_HasAttrString(data, "__cuda_array_interface__")) {
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from __cuda_array_interface__");
auto tensor = tensor_from_cuda_array_interface(data);
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
auto device = device_opt.has_value() ? *device_opt : options.device();
pybind11::gil_scoped_release no_gil;
maybe_initialize_cuda(device);
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
}
if (is_numpy_available() && PyArray_Check(data)) {
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from numpy");
auto tensor = tensor_from_numpy(data, /*warn_if_not_writeable=*/!copy_numpy);
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
auto device = device_opt.has_value() ? *device_opt : options.device();
pybind11::gil_scoped_release no_gil;
maybe_initialize_cuda(device);
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
}
#endif
auto device = device_opt.has_value() ? *device_opt : options.device();
auto sizes = compute_sizes(data, scalar_type);
ScalarType inferred_scalar_type = type_inference ? infer_scalar_type(data) : scalar_type;
// This exists to prevent us from tracing the call to empty(). The actual
// autograd code doesn't really matter, because requires_grad is always false
// here.
Tensor tensor;
{
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
at::tracer::impl::NoTracerDispatchMode tracer_guard;
c10::impl::ExcludeDispatchKeyGuard pythonmode_guard(c10::DispatchKey::Python);
c10::impl::ExcludeDispatchKeyGuard pythonmode_snapshot_guard(c10::DispatchKey::PythonTLSSnapshot);
// functorch uses FuncTorchDynamicLayerBackMode as a mode key to wrap all
// tensors returned from operators in special TensorWrapper tensor extension
// The problem with this is that TensorWrapper does not have storage so
// accessing the data_ptr (for recursive_store) internal asserts.
// As a quick hack, the guard here prevents functorch from wrapping the empty
// tensor in a TensorWrapper and instead when `tensor.to` is called later,
// the tensor gets wrapped. A more long-term solution is to think about
// what the extensibility mechanism for this function (internal_new_from_data)
// looks like for mode-based dispatch keys and C++ tensor extensions.
c10::impl::ExcludeDispatchKeyGuard functorch_guard(c10::DispatchKey::FuncTorchDynamicLayerBackMode);
if (isStorage(data)) {
ScalarType storage_scalar_type;
bool is_typed_storage = false;
Storage storage = createStorageGetType(data, storage_scalar_type, is_typed_storage);
TORCH_CHECK(!is_typed_storage || storage_scalar_type == scalar_type,
"Expected a Storage of type ", scalar_type,
" or an _UntypedStorage, but got ", storage_scalar_type);
tensor = at::empty(sizes, at::initialTensorOptions().dtype(is_typed_storage ? storage_scalar_type : inferred_scalar_type).pinned_memory(pin_memory).device(storage.device()));
tensor.set_(storage);
} else {
TensorOptions opts = at::initialTensorOptions().dtype(inferred_scalar_type);
// If the device is Meta, take the shortcut. We don't want to allocate an
// empty CPU tensor which would break our contract for meta tensors.
if (device == at::kMeta) {
return at::empty(sizes, opts.device(device));
}
tensor = at::empty(sizes, opts.pinned_memory(pin_memory));
if (c10::multiply_integers(tensor.sizes()) != 0) {
recursive_store(
(char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0,
inferred_scalar_type, tensor.dtype().itemsize(), data);
}
}
}
pybind11::gil_scoped_release no_gil;
maybe_initialize_cuda(device);
// However, it is VERY important that we trace the to() call here (even
// though the reason this is important is a hack). Without *some* factory
// function call that is traced at construction time, we will consider
// a tensor constant as originating from "outside" the trace, and if you
// try to return it directly we will fail with the error saying no
// "no observable data dependence". In an ideal world, we wouldn't trace
// a to() call but I need to think harder about what exactly we should trace
// in this case.
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false);
}
Tensor new_from_data_copy(
c10::TensorOptions options,
at::ScalarType scalar_type,
c10::optional<Device> device,
PyObject* data) {
return internal_new_from_data(options, scalar_type, device, data,
/*copy_variables=*/true, /*copy_numpy=*/true,
/*type_inference=*/false);
}
Tensor legacy_new_from_sequence(
c10::TensorOptions options,
at::ScalarType scalar_type,
c10::optional<Device> device,
PyObject* data) {
if (!PySequence_Check(data)) {
throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name);
}
return internal_new_from_data(options, scalar_type, device, data,
/*copy_variables=*/false, /*copy_numpy=*/false,
/*type_inference=*/false);
}
// "base" here refers to the Tensor type on which the function was invoked, e.g.:
// in x.new(y), 'x' is the base.
// TODO: Rewrite this using dispatchKeyToTensorOptions
void check_base_legacy_new(c10::DispatchKey dispatch_key, at::Layout expected_layout) {
if (expected_layout == c10::kStrided) {
constexpr c10::DispatchKeySet expected_key_set({
c10::DispatchKey::CPU,
c10::DispatchKey::CUDA,
c10::DispatchKey::HIP,
c10::DispatchKey::XLA,
c10::DispatchKey::Lazy,
c10::DispatchKey::XPU,
c10::DispatchKey::HPU,
});
TORCH_CHECK(expected_key_set.has(dispatch_key),
"new(): expected key in ",
expected_key_set,
" but got: ",
dispatch_key);
} else if(expected_layout == c10::kSparse) {
// NOTE: no sparse XLA or Lazy
constexpr c10::DispatchKeySet expected_key_set({
c10::DispatchKey::SparseCPU,
c10::DispatchKey::SparseCUDA,
c10::DispatchKey::SparseHIP,
c10::DispatchKey::SparseXPU,
});
TORCH_CHECK(expected_key_set.has(dispatch_key),
"new(): expected key in ",
expected_key_set,
" but got: ",
dispatch_key);
} else {
TORCH_INTERNAL_ASSERT(false, "unexpected layout");
}
}
// TODO: Make this accept options instead of dispatch key
void check_legacy_ctor_device(c10::DispatchKey dispatch_key, c10::optional<Device> device) {
if (device.has_value()) {
TORCH_CHECK(dispatchKeyToDeviceType(dispatch_key) == device.value().type(),
"legacy constructor expects device type: ", dispatchKeyToDeviceType(dispatch_key),
" but device type: ", device.value().type(), " was passed");
}
}
enum class CtorOrNew {
CTOR,
NEW,
};
Tensor legacy_sparse_tensor_generic_ctor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs, CtorOrNew ctor_or_new) {
auto options = dispatchKeyToTensorOptions(dispatch_key);
static PythonArgParser parser({
"new(*, Device? device=None)",
"new(*, int64_t cdata)|hidden",
"new(Tensor indices, Tensor values, *, Device? device=None)",
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
"new(IntArrayRef size, *, Device? device=None)",
});
if (ctor_or_new == CtorOrNew::NEW) check_base_legacy_new(dispatch_key, c10::kSparse);
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
auto deviceOptional = r.deviceOptional(0);
check_legacy_ctor_device(dispatch_key, deviceOptional);
return at::empty({0}, build_options(options, scalar_type, deviceOptional));
} else if (r.idx == 1) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return at::unsafeTensorFromTH(cdata, true);
} else if (r.idx == 2) {
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
// have a device (we should infer it).
auto deviceOptional = r.deviceOptional(2);
check_legacy_ctor_device(dispatch_key, deviceOptional);
at::OptionalDeviceGuard device_guard(deviceOptional);
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
} else if (r.idx == 3) {
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
// have a device (we should infer it).
auto deviceOptional = r.deviceOptional(3);
check_legacy_ctor_device(dispatch_key, deviceOptional);
at::OptionalDeviceGuard device_guard(deviceOptional);
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
} else if (r.idx == 4) {
PyObject* arg = r.pyobject(0);
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(dispatch_key, deviceOptional);
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
if (ctor_or_new == CtorOrNew::CTOR) {
throw TypeError("torch.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \
"or construct a strided tensor and convert it to sparse via to_sparse.");
} else {
throw TypeError("SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \
"or construct a strided tensor and convert it to sparse via to_sparse.");
}
}
return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0));
}
throw std::runtime_error("new(): invalid arguments");
}
Tensor legacy_sparse_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
return legacy_sparse_tensor_generic_ctor_new(dispatch_key, scalar_type, args, kwargs, CtorOrNew::CTOR);
}
Tensor legacy_sparse_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
return legacy_sparse_tensor_generic_ctor_new(dispatch_key, scalar_type, args, kwargs, CtorOrNew::NEW);
}
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
c10::TensorOptions typeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::DispatchKey dispatch_key) {
auto options = dispatchKeyToTensorOptions(dispatch_key);
if (!r.isNone(device_idx)) {
// TODO: This line doesn't seem to be exercised at all in tests
options = options.device(r.device(device_idx).type());
}
return options;
}
} // namespace
Tensor legacy_tensor_generic_ctor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs, CtorOrNew ctor_or_new) {
auto options = dispatchKeyToTensorOptions(dispatch_key);
static PythonArgParser parser({
"new(*, Device? device=None)",
"new(Storage storage)",
"new(*, int64_t cdata)|hidden",
"new(Tensor other)",
"new(Tensor other, *, Device? device=None)|hidden", // prevent Tensor matching with IntArrayRef, PyObject*
"new(IntArrayRef size, *, Device? device=None)",
"new(PyObject* data, *, Device? device=None)",
});
if (isSparse(dispatchKeyToBackend(dispatch_key))) {
return legacy_sparse_tensor_generic_ctor_new(dispatch_key, scalar_type, args, kwargs, ctor_or_new);
}
if (ctor_or_new == CtorOrNew::NEW) check_base_legacy_new(dispatch_key, c10::kStrided);
ParsedArgs<2> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
auto deviceOptional = r.deviceOptional(0);
check_legacy_ctor_device(dispatch_key, deviceOptional);
at::OptionalDeviceGuard device_guard(deviceOptional);
return at::empty({0}, build_options(options, scalar_type));
} else if (r.idx == 1) {
at::ScalarType storage_scalar_type;
bool is_typed_storage = false;
at::Storage storage = r.storage(0, storage_scalar_type, is_typed_storage);
if (storage_scalar_type != at::ScalarType::Undefined && is_typed_storage) {
TORCH_CHECK(
storage_scalar_type == scalar_type,
"Expected a Storage of type ", scalar_type,
" or an _UntypedStorage, but got type ", storage_scalar_type,
" for argument 1 'storage'");
}
return new_with_storage(options, scalar_type, storage);
} else if (r.idx == 2) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return at::unsafeTensorFromTH(cdata, true);
} else if (r.idx == 3) {
return new_with_tensor(options, scalar_type, r.tensor(0));
} else if (r.idx == 4) {
if (ctor_or_new == CtorOrNew::CTOR) {
TORCH_CHECK(false, "Legacy tensor constructor of the form torch.Tensor(tensor, device=device) " \
"is not supported. Use torch.tensor(...) or torch.as_tensor(...) instead.");
} else {
TORCH_CHECK(false, "Legacy tensor new of the form tensor.new(tensor, device=device) " \
"is not supported. Use torch.as_tensor(...) instead.");
}
} else if (r.idx == 5) {
PyObject* arg = r.pyobject(0);
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(dispatch_key, deviceOptional);
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0));
}
return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0));
} else if (r.idx == 6) {
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(dispatch_key, deviceOptional);
return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0));
}
throw std::runtime_error("new(): invalid arguments");
}
Tensor legacy_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
return legacy_tensor_generic_ctor_new(dispatch_key, scalar_type, args, kwargs, CtorOrNew::CTOR);
}
Tensor legacy_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
return legacy_tensor_generic_ctor_new(dispatch_key, scalar_type, args, kwargs, CtorOrNew::NEW);
}
Tensor indexing_tensor_from_data(
c10::TensorOptions options,
at::ScalarType scalar_type,
c10::optional<Device> device,
PyObject* data) {
// Specific to tensor indexing, converts an indexing list to an
// indexing tensor (type Byte or Long)
ScalarType inferred_scalar_type = infer_scalar_type(data);
if (inferred_scalar_type == ScalarType::Byte || inferred_scalar_type == ScalarType::Bool) {
return internal_new_from_data(options, inferred_scalar_type, device, data,
/*copy_variables=*/false, /*copy_numpy=*/false,
/*type_inference=*/false);
} else {
return internal_new_from_data(options, scalar_type, device, data,
/*copy_variables=*/false, /*copy_numpy=*/false,
/*type_inference=*/false);
}
}
Tensor sparse_csr_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
static PythonArgParser parser({
"sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Layout? layout=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)",
"sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, *, ScalarType dtype=None, Layout? layout=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)",
});
const int NUM_ARGS = 9, CROW_INDICES_ARG = 0, COL_INDICES_ARG = 1, VALUES_ARG = 2;
ParsedArgs<NUM_ARGS> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
auto safe_get_attr_string = [](PyObject *o, const char *attr_name) -> PyObject* {
// Clear error indicator if attribute does not exists.
// Otherwise subsequent Python C API calls might return bogus values.
// See https://github.com/pytorch/pytorch/issues/58520 for more details
auto rc = PyObject_GetAttrString(o, attr_name);
if (!rc) {
if (!PyErr_ExceptionMatches(PyExc_AttributeError)) {
throw python_error();
}
// Warning: a wrong attribute error may be suppressed here
PyErr_Clear();
}
return rc;
};
THPObjectPtr crow_indices_dtype_attr(safe_get_attr_string(r.pyobject(CROW_INDICES_ARG), "dtype"));
THPObjectPtr col_indices_dtype_attr(safe_get_attr_string(r.pyobject(COL_INDICES_ARG), "dtype"));
at::ScalarType crow_indices_scalar_type = crow_indices_dtype_attr ? reinterpret_cast<THPDtype*>(
crow_indices_dtype_attr.get())->scalar_type : kInt;
at::ScalarType col_indices_scalar_type = col_indices_dtype_attr ? reinterpret_cast<THPDtype*>(
col_indices_dtype_attr.get())->scalar_type : kInt;
if (r.idx == 0) {
const int SIZE_ARRAY_ARG = 3, TYPE_INFERENCE_ARG = 4, DEVICE_TYPE_ARG = 6, REQ_GRAD_ARG = 8;
bool type_inference = r.isNone(TYPE_INFERENCE_ARG);
const auto inferred_options = typeIdWithDefault(r, DEVICE_TYPE_ARG, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(TYPE_INFERENCE_ARG, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(DEVICE_TYPE_ARG));
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
r.pyobject(VALUES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/type_inference);
Tensor crow_indices = internal_new_from_data(values.options(),
crow_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), r.pyobject(CROW_INDICES_ARG),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/true);
Tensor col_indices = internal_new_from_data(values.options(),
col_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), r.pyobject(COL_INDICES_ARG),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/true);
return at::sparse_csr_tensor(crow_indices, col_indices, values, r.intlist(SIZE_ARRAY_ARG),
values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(REQ_GRAD_ARG));
} else if (r.idx == 1) {
const int TYPE_INFERENCE_ARG = 3, DEVICE_TYPE_ARG = 5, REQ_GRAD_ARG = 7;
bool type_inference = r.isNone(TYPE_INFERENCE_ARG);
const auto inferred_options = typeIdWithDefault(r, DEVICE_TYPE_ARG, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(TYPE_INFERENCE_ARG, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(DEVICE_TYPE_ARG));
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
r.pyobject(VALUES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/type_inference);
Tensor crow_indices = internal_new_from_data(values.options(),
crow_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
r.pyobject(CROW_INDICES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/true);
Tensor col_indices = internal_new_from_data(values.options(), col_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
r.pyobject(COL_INDICES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/true);
return at::sparse_csr_tensor(crow_indices, col_indices, values,
values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(REQ_GRAD_ARG));
}
throw std::runtime_error("sparse_csr_tensor(): invalid arguments");
}
Tensor _sparse_csr_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
enum {
ARG_CROW_INDICES = 0,
ARG_COL_INDICES,
ARG_VALUES,
ARG_SIZE,
ARG_TYPE,
ARG_DEVICE,
ARG_REQUIRES_GRAD,
ARGS_COUNT
};
static PythonArgParser parser({
"_sparse_csr_tensor_unsafe(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
});
ParsedArgs<ARGS_COUNT> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
bool type_inference = r.isNone(ARG_TYPE);
const auto inferred_options = typeIdWithDefault(r, ARG_DEVICE, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE));
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/type_inference);
Tensor crow_indices = internal_new_from_data(values.options(), kInt, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_CROW_INDICES),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/true);
Tensor col_indices = internal_new_from_data(values.options(), kInt, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_COL_INDICES),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/true);
return at::_sparse_csr_tensor_unsafe(crow_indices, col_indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD));
}
// Note [Ensuring sparse values and indices match devices]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// In all places where we construct indices, we read out options from values
// (rather than use inferred_options). Why? This handles the case when
// values is a CUDA tensor, but indices is a non-Tensor value (and the device
// argument is not set). Example:
//
// torch.sparse_coo_tensor(([0, 1],), self.empty(2, 0).cuda(), (4, 0))
//
// Sparse tensors require both indices and values to live on the same device.
// If values lives on CUDA, we can infer where the indices should live, and
// should accept even ordinary index sequences (and just make sure we write them
// into the correct device). values is the ONLY way we know that the index
// tensor should go to CUDA, so we have to get the information in somehow.
//
// This code is kind of jank. For one, the dtype in options is silently ignored
// by internal_new_from_data. Also, in classic janky code style, it used to
// not work quite right: if values lives on "cuda:1", before all we said was
// "this needs to be CUDA" and indices would be allocated on the wrong tensor.
// Options is more right and gets this correct.
Tensor sparse_coo_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
static PythonArgParser parser({
"sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
"sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
"sparse_coo_tensor(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
});
ParsedArgs<6> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
bool type_inference = r.isNone(2);
const auto inferred_options = typeIdWithDefault(r, 3, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(2, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(3));
// if no dtype provided, infer type based on value type.
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(3), r.pyobject(1),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/type_inference);
// See Note [Ensuring sparse values and indices match devices]
Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(3), r.pyobject(0),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/false);
return at::sparse_coo_tensor(indices, values, values.options().layout(at::kSparse)).set_requires_grad(r.toBool(4));
} else if (r.idx == 1) {
bool type_inference = r.isNone(3);
const auto inferred_options = typeIdWithDefault(r, 4, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(3, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(4));
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(4), r.pyobject(1),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/type_inference);
// See Note [Ensuring sparse values and indices match devices]
Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(4), r.pyobject(0),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/false);
return at::sparse_coo_tensor(indices, values, r.intlist(2), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(5));
} else if (r.idx == 2) {
const auto inferred_options = typeIdWithDefault(r, 2, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(1, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(2));
return at::sparse_coo_tensor(r.intlist(0), inferred_options.dtype(inferred_scalar_type).layout(at::kSparse)).set_requires_grad(r.toBool(3));
}
throw std::runtime_error("sparse_coo_tensor(): invalid arguments");
}
Tensor _sparse_coo_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
enum {
ARG_INDICES = 0,
ARG_VALUES,
ARG_SIZE,
ARG_TYPE,
ARG_DEVICE,
ARG_REQUIRES_GRAD,
ARGS_COUNT
};
static PythonArgParser parser({
"_sparse_coo_tensor_unsafe(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
});
ParsedArgs<ARGS_COUNT> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
bool type_inference = r.isNone(ARG_TYPE);
const auto inferred_options = typeIdWithDefault(r, ARG_DEVICE, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE));
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/type_inference);
// See Note [Ensuring sparse values and indices match devices]
Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_INDICES),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/false);
return at::_sparse_coo_tensor_unsafe(indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD));
}
void _validate_sparse_coo_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
auto options = dispatchKeyToTensorOptions(dispatch_key);
static PythonArgParser parser({
"_validate_sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size)",
});
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
Tensor values = internal_new_from_data(
options, scalar_type, c10::nullopt, r.pyobject(1),
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
// See Note [Ensuring sparse values and indices match devices]
Tensor indices = internal_new_from_data(
values.options(), kLong, c10::nullopt, r.pyobject(0),
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/false);
at::native::_validate_sparse_coo_tensor_args(indices, values, r.intlist(2));
}
void _validate_sparse_csr_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
auto options = dispatchKeyToTensorOptions(dispatch_key);
static PythonArgParser parser({
"_validate_sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size)",
});
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
Tensor values = internal_new_from_data(
options, scalar_type, c10::nullopt, r.pyobject(2),
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
// See Note [Ensuring sparse values and indices match devices]
Tensor crow_indices = internal_new_from_data(
values.options(), kInt, c10::nullopt, r.pyobject(0),
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
Tensor col_indices = internal_new_from_data(
values.options(), kInt, c10::nullopt, r.pyobject(1),
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
at::native::_validate_sparse_csr_tensor_args(crow_indices, col_indices, values, r.intlist(3));
}
Tensor tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False, DimnameList? names=None)",
});
constexpr int ctor_num_args = 6;
ParsedArgs<ctor_num_args> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
PyObject* data = r.pyobject(0);
if (THPVariable_Check(data)) {
auto ret = PyErr_WarnEx(PyExc_UserWarning,
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
"or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).", 1);
if (ret != 0) throw python_error();
}
bool type_inference = r.isNone(1);
bool pin_memory = r.toBool(3);
bool args_requires_grad = r.toBool(4);
auto new_tensor = internal_new_from_data(
typeIdWithDefault(r, 2, dispatch_key),
r.scalartypeWithDefault(1, scalar_type),
r.deviceOptional(2),
data,
/*copy_variables=*/true,
/*copy_numpy=*/true,
/*type_inference=*/type_inference,
pin_memory);
auto names = r.toDimnameListOptional(5);
if (names) {
at::namedinference::propagate_names(new_tensor, *names, /*validate_names=*/true);
}
new_tensor.detach_(); // ensure new_tensor a leaf node
new_tensor.set_requires_grad(args_requires_grad);
return new_tensor;
}
throw std::runtime_error("tensor(): invalid arguments");
}
Tensor as_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
// TODO: add requires_grad once we decide on semantics for sharing data.
static PythonArgParser parser({
"as_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None)",
});
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
bool type_inference = r.isNone(1);
return internal_new_from_data(
typeIdWithDefault(r, 2, dispatch_key),
r.scalartypeWithDefault(1, scalar_type),
r.deviceOptional(2),
r.pyobject(0),
/*copy_variables=*/false,
/*copy_numpy=*/false,
/*type_inference=*/type_inference);
}
throw std::runtime_error("tensor(): invalid arguments");
}
Tensor new_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
});
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
PyObject* data = r.pyobject(0);
if (THPVariable_Check(data)) {
auto ret = PyErr_WarnEx(PyExc_UserWarning,
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
"or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor).", 1);
if (ret != 0) throw python_error();
}
bool args_requires_grad = r.toBool(3);
auto new_tensor = new_from_data_copy(
typeIdWithDefault(r, 2, dispatch_key),
r.scalartypeWithDefault(1, scalar_type),
r.deviceOptional(2),
data);
new_tensor.detach_(); // ensure new_tensor a leaf node
new_tensor.set_requires_grad(args_requires_grad);
return new_tensor;
}
throw std::runtime_error("new_tensor(): invalid arguments");
}
Tensor tensor_frombuffer(PyObject* buffer, ScalarType dtype, int64_t count, int64_t offset, bool requires_grad) {
auto elsize = at::elementSize(dtype);
size_t actual_count = 0;
Py_buffer view;
if (PyObject_GetBuffer(buffer, &view, PyBUF_WRITABLE) < 0) {
TORCH_CHECK(
PyObject_GetBuffer(buffer, &view, PyBUF_SIMPLE) >= 0,
"could not retrieve buffer from object");
TORCH_WARN_ONCE(
"The given buffer is not writable, and PyTorch does "
"not support non-writable tensors. This means you can write to the "
"underlying (supposedly non-writable) buffer using the tensor. "
"You may want to copy the buffer to protect its data or make it writable "
"before converting it to a tensor. This type of warning will be "
"suppressed for the rest of this program.");
PyErr_Clear();
}
Py_INCREF(view.obj);
THPObjectPtr obj(view.obj);
auto len = view.len;
auto buf = view.buf;
PyBuffer_Release(&view);
TORCH_CHECK_VALUE(
len > 0 && count != 0,
"both buffer length (", len, ") and count (", count, ") must not be 0");
TORCH_CHECK_VALUE(
offset >= 0 && offset < len,
"offset (", offset, " bytes) must be non-negative and no greater than "
"buffer length (", len, " bytes) minus 1");
TORCH_CHECK_VALUE(
count > 0 || (len - offset) % elsize == 0,
"buffer length (", len - offset, " bytes) after offset (", offset, " bytes) "
"must be a multiple of element size (", elsize, ")");
if (count < 0) {
actual_count = (len - offset) / elsize;
} else {
actual_count = static_cast<size_t>(count);
}
TORCH_CHECK_VALUE(
static_cast<size_t>(offset) + actual_count * elsize <= len,
"requested buffer length (", actual_count, " * ", elsize, " bytes) "
"after offset (", offset, " bytes) must not be greater than actual "
"buffer length (", len, " bytes)");
auto offset_buf = static_cast<char*>(buf) + offset;
auto options = TensorOptions()
.dtype(dtype)
.device(c10::kCPU);
auto tensor = at::for_blob(offset_buf, static_cast<int64_t>(actual_count))
.options(options)
.deleter([obj = obj.release()](void*) {
pybind11::gil_scoped_acquire gil;
Py_DECREF(obj);
})
.make_tensor();
tensor.set_requires_grad(requires_grad);
return tensor;
}
Tensor tensor_fromDLPack(PyObject *data) {
DLManagedTensor * dlMTensor = (DLManagedTensor *)PyCapsule_GetPointer(data, "dltensor");
TORCH_CHECK(dlMTensor,
"from_dlpack received an invalid capsule. "
"Note that DLTensor capsules can be consumed only once, "
"so you might have already constructed a tensor from it once.");
// atensor steals the ownership of the underlying storage. It also passes a
// destructor function that will be called when the underlying storage goes
// out of scope. When the destructor is called, the dlMTensor is destructed too.
auto atensor = at::fromDLPack(dlMTensor);
// Make sure this capsule will never be used again.
PyCapsule_SetName(data, "used_dltensor");
// It is possible that the call to at::fromDLPack is the very first
// call to create a Tensor in PyTorch. If so, then _lazy_init has
// not been called, and the attempt to call createPyObject will fail
// because cuda ATen types have not been registered in Python yet.
// so if we have a cuda tensor, then we need to make sure
// we have called _lazy_init here
if(atensor.is_cuda()) {
py::module::import("torch.cuda").attr("init")();
}
return atensor;
}
Tensor asarray(
PyObject* obj,
c10::optional<ScalarType> dtype,
c10::optional<Device> device,
c10::optional<bool> copy,
bool requires_grad) {
Tensor tensor;
bool force_copy = copy.value_or(false);
bool force_alias = !copy.value_or(true);
bool should_warn_numpy_not_writable = false;
auto dtype_unwrapped =
dtype.value_or(torch::tensors::get_default_scalar_type());
// Check whether 'obj' is a 'Tensor'
if (THPVariable_Check(obj)) {
tensor = THPVariable_Unpack(obj);
}
#ifdef USE_NUMPY
// Check whether 'obj' is a NumPy Array
if (is_numpy_available() && PyArray_Check(obj)) {
tensor = tensor_from_numpy(obj, /*warn_if_not_writeable=*/false);
should_warn_numpy_not_writable = !PyArray_ISWRITEABLE((PyArrayObject*) obj);
}
#endif
// Check whether 'obj' is a 'DLPack' capsule
if (!tensor.defined() && PyCapsule_IsValid(obj, "dltensor") != 0) {
tensor = tensor_fromDLPack(obj);
}
// Check whether 'obj' implements the buffer protocol
if (!tensor.defined() && PyObject_CheckBuffer(obj) != 0) {
tensor = tensor_frombuffer(obj, dtype_unwrapped, -1, 0, requires_grad);
}
if (tensor.defined()) {
// Given an aliasable tensor, should we copy it?
bool wrong_device = device.has_value() && device.value() != tensor.device();
bool wrong_dtype =
dtype.has_value() && dtype.value() != tensor.scalar_type();
bool needs_copying = !copy.has_value() && (wrong_device || wrong_dtype);
// Given a defined tensor, we copy it if either we have to (copy=True) or
// if we need to (copy=None) because of mismatched device or dtype.
if (force_copy || needs_copying) {
if (wrong_device || wrong_dtype) {
tensor = tensor.to(
device.value_or(tensor.device()),
dtype.value_or(tensor.scalar_type()));
} else {
tensor = tensor.clone();
}
} else {
// If we are not copying, we have to check whther we have the tensor
// in the right device, with the right dtype.
TORCH_CHECK_VALUE(
!wrong_device,
"can't alias tensor from device '", tensor.device(),
"' to '", device.value(), "'.");
TORCH_CHECK_VALUE(
!wrong_dtype,
"can't alias tensor with dtype '", tensor.scalar_type(),
"' into dtype '", dtype.value(), "'.");
// If tensor is a NumPy Array view, we warn the user about non-writeable
// arrays if this is the case.
if (should_warn_numpy_not_writable) {
warn_numpy_not_writeable();
}
}
// Setting 'requires_grad' when the tensor is not a leaf does not work.
// Whenever that happens, we have to use 'detach'.
if (!tensor.is_leaf() && !requires_grad) {
tensor = tensor.detach();
} else {
tensor.set_requires_grad(requires_grad);
}
} else {
// Undefined tensor means it does not implement neither DLPack nor
// the buffer protocol. Last case is a sequence, in which case we must
// copy (copy can't be false).
TORCH_CHECK_VALUE(
!force_alias, "can't alias arbitrary sequence into a tensor.");
// Make tensor from sequence, inferring its type, and then convert
// it to the desired type.
// Type inference is activated only if the dtype has not been specified.
// Otherwise, we force the unwrapped dtype.
tensor = internal_new_from_data(
TensorOptions(), dtype_unwrapped, device, obj,
/* copy_variables = */ false, /* copy_numpy = */ false, /* type_inference = */ !dtype.has_value());
tensor.set_requires_grad(requires_grad);
}
return tensor;
}
}} // namespace torch::utils