pytorch/torch/csrc/jit/script/compiler.cpp
Wanchao Liang d6bfc53b9e Export BatchNorm functional and module, add necessary JIT support (#14016)
Summary:
This PR did three things:

1. It export the BatchNorm functional and module, and rewrite some of the components to stay align with the current supported JIT features
2. In the process of export, add necessary compiler support for in_place op aug assign
4. change the test_jit behavior in add_module_test to utilize a single rng state during module initialization
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14016

Differential Revision: D13112064

Pulled By: wanchaol

fbshipit-source-id: 31e3aee5fbb509673c781e7dbb6d8884cfa55d91
2018-11-20 14:15:06 -08:00

2675 lines
92 KiB
C++

#include "torch/csrc/jit/script/compiler.h"
#include "torch/csrc/jit/passes/lower_tuples.h"
#include "torch/csrc/jit/passes/constant_pooling.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/jit/interpreter.h"
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/jit/script/parser.h"
#include "torch/csrc/jit/assertions.h"
#include "torch/csrc/utils/object_ptr.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/jit/script/builtin_functions.h"
#include "torch/csrc/jit/hooks_for_testing.h"
#include "torch/csrc/jit/constants.h"
#include "c10/util/Optional.h"
#include <climits>
#include <set>
namespace torch {
namespace jit {
namespace script {
using SugaredValuePtr = std::shared_ptr<SugaredValue>;
using FunctionTable = std::unordered_map<std::string, Method&>;
using ValueTable = std::unordered_map<std::string, SugaredValuePtr>;
using AttributeMap = std::unordered_map<std::string, Const>;
using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>;
struct NoneValue : SugaredValue {
NoneValue() = default;
std::string kind() const override {
return "None";
}
};
struct PrintValue : public SugaredValue {
std::string kind() const override {
return "print";
}
std::shared_ptr<SugaredValue> call(
SourceRange loc,
Method & m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
auto& g = *m.graph();
if (!attributes.empty())
throw ErrorReport(loc) << "print doesn't accept any keyword arguments";
//temporary hack to allow print statements to work in python 2, where
//print(a, b) is treated as a (a, b) tuple input.
std::vector<Value*> lowered_inputs = toValues(*m.graph(), inputs);
if(lowered_inputs.size() == 1 && lowered_inputs.at(0)->node()->kind() == prim::TupleConstruct) {
auto input = lowered_inputs[0];
for(size_t j = 0; j < input->node()->inputs().size(); ++j) {
lowered_inputs.insert(lowered_inputs.begin() + 1 + j, input->node()->inputs().at(j));
}
lowered_inputs.erase(lowered_inputs.begin());
}
g.insertNode(g.create(prim::Print, lowered_inputs, 0)
->setSourceLocation(std::make_shared<SourceRange>(loc)));
return std::make_shared<NoneValue>();
}
};
static Value* typeCast(const SourceRange& loc, Value* value, TypePtr dst) {
auto& graph = *value->owningGraph();
const TypePtr orig = value->type();
Node* n = nullptr;
if(dst->isSubtypeOf(DynamicType::get()) && orig->isSubtypeOf(NumberType::get())) {
n = graph.createNumToTensor(value);
} else if (dst->isSubtypeOf(NumberType::get()) && orig->isSubtypeOf(DynamicType::get())) {
n = graph.createTensorToNum(dst, value);
} else if (dst->isSubtypeOf(BoolType::get()) && orig->isSubtypeOf(DynamicType::get())) {
n = graph.createTensorToBool(value);
} else if(dst->isSubtypeOf(IntType::get()) && orig->isSubtypeOf(FloatType::get())) {
n = graph.createFloatToInt(value);
} else if(dst->isSubtypeOf(FloatType::get()) && orig->isSubtypeOf(IntType::get())) {
n = graph.createIntToFloat(value);
} else if(dst->isSubtypeOf(FloatType::get()) && orig->isSubtypeOf(StringType::get())) {
n = graph.createStringToFloat(value);
} else {
throw ErrorReport(loc) << "Cannot cast type '" << orig->str() << "' to type '"
<< dst->str() << "'.";
}
auto* result = graph.insertNode(n)
->setSourceLocation(std::make_shared<SourceRange>(loc))
->output();
return result;
}
// expressions like int(x)
struct CastValue : public SugaredValue {
CastValue(TypePtr type)
: type(std::move(type)) {}
std::string kind() const override {
std::stringstream ss;
ss << "<" << type->str() << " cast primitive>";
return ss.str();
}
std::shared_ptr<SugaredValue> call(
SourceRange loc,
Method & m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
if (!attributes.empty())
throw ErrorReport(loc) << "casts do not accept any keyword arguments";
if (inputs.size() != 1)
throw ErrorReport(loc) << "expected a single argument for cast";
auto values = toValues(*m.graph(), inputs);
Value* input = values.at(0);
if(!input->type()->isSubtypeOf(type)) {
input = typeCast(loc, input, type);
}
return std::make_shared<SimpleValue>(input);
}
private:
TypePtr type;
};
// Auxiliary data structure for desugaring variable binding into our always
// explicitly scoped language as we descend down
// nested control structures in the frontend (which themselves don't introduce
// scopes)
//
// The algorithm is roughly as follows:
// 1) While emitting a block within a control operator, add inputs and outputs
// from the block for each value referenced (both "reads" and "writes").
// This sets the value up as a candidate loop carried dependency.
// 2) When we reach the end of the block, examine all the values in the current
// scope's value map. If the name also resides in an outer scope with a
// different Value*, this is a true loop-carried dependency. If not, this
// value was not assigned to. Replace all references to the block input
// with the Value* pointed to in the tightest enclosing scope. Then delete
// that block input and output.
// 3) When we emit the actual control operator, take all of the loop-carried
// dependency values as inputs and return them as outputs from the control
// op
//
// Note that an alternative implementation could only add the loop-carried dep
// inputs and outputs when we see a value that is mutated. This, however
// requires replacing all references to that value *within the current
// block* with a new input. That is to say: we need to traverse the pre-
// decessor nodes and replace inputs that reference that value with the
// newly-created input. This could be made less expensive with a change to
// the IR API, but for now we choose to pessimisitically create inputs and
// delete unnecessary ones later with replaceAllusesWith().
struct Environment {
Environment(Method & method, Resolver resolver, Block* b, std::shared_ptr<Environment> next = nullptr)
: method(method), resolver(std::move(resolver)), b(b), next(std::move(next)) {}
Method & method;
Resolver resolver;
std::vector<std::string> captured_inputs;
std::unordered_map<std::string, std::string> error_messages;
Block* b;
std::shared_ptr<Environment> next;
// set type error in the lowest environment. if the variable is used after an
// error has been set, then we will use the more informative error message
void setVariableTypeError(const std::string& name, const std::string &msg) {
auto runner = this;
while (runner->next) {
runner = runner->next.get();
}
runner->error_messages[name] = msg;
}
// see if type error has been set for a variable
c10::optional<std::string> findVariableTypeError(const std::string& name) {
auto runner = this;
while (runner->next) {
runner = runner->next.get();
}
auto msg = runner->error_messages.find(name);
if (msg != runner->error_messages.end()) {
return msg->second;
} else {
return c10::nullopt;
}
}
SugaredValuePtr findInThisFrame(const std::string& name) {
auto it = value_table.find(name);
if (it != value_table.end()) {
return it->second;
}
return nullptr;
}
SugaredValuePtr findInParentFrame(const std::string& name) {
return next ? next->findInAnyFrame(name) : nullptr;
}
SugaredValuePtr findInAnyFrame(const std::string& name) {
for (auto runner = this; runner; runner = runner->next.get()) {
if(auto r = runner->findInThisFrame(name)) {
return r;
}
}
return nullptr;
}
Value* getValueInThisFrame(const SourceRange& loc, const std::string& name) {
return value_table.at(name)->asValue(loc, method);
}
SugaredValuePtr createCapturedInput(Value* orig, const std::string& name) {
// Create the input
Value* new_input = b->addInput()->setType(orig->type());
// Associate this name with this value
auto sv = std::make_shared<SimpleValue>(new_input);
value_table[name] = sv;
// List as a positional input
captured_inputs.push_back(name);
return sv;
}
SugaredValuePtr createCapturedInputIfNeeded(const SourceRange& loc, std::string ident) {
auto in_frame = findInThisFrame(ident);
if (in_frame) {
return in_frame;
}
// recursively handles the case where parent blocks are also loops
auto from_parent = next ? next->createCapturedInputIfNeeded(loc, ident) : nullptr;
// recursively create the captured input if it is the loop block
if (from_parent && getBlockOwningKind() == prim::Loop) {
if (Value* simple_val = asSimple(from_parent))
from_parent = createCapturedInput(simple_val, ident);
}
return from_parent;
}
Block* block() {
return b;
}
Symbol getBlockOwningKind() {
Symbol owning_kind = Symbol();
if (b->owningNode()) {
owning_kind = b->owningNode()->kind();
}
return owning_kind;
}
void setVar(const SourceRange& loc, const std::string& name, Value* value) {
setSugaredVar(loc, name, std::make_shared<SimpleValue>(value));
}
static Value* asSimple(SugaredValuePtr value) {
if(SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) {
return sv->getValue();
}
return nullptr;
}
void setSugaredVar(const SourceRange& loc, const std::string& name, SugaredValuePtr value) {
Value* as_simple_value = asSimple(value);
if (as_simple_value && !as_simple_value->hasUniqueName())
as_simple_value->setUniqueName(name);
// prevent re-assignment involving any sugared values
// any reassignment like:
// a = ...
// while ...
// a = ..
// requires 'a' to be first-class in the graph since its value depends on
// control flow
if(auto parent = findInParentFrame(name)) {
if(!as_simple_value) {
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' to a value of type " << value->kind() <<
" because " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
}
Value* simple_parent = asSimple(parent);
if(!simple_parent) {
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' because it has type " << value->kind() <<
" and " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
}
if (!as_simple_value->type()->isSubtypeOf(
unshapedType(simple_parent->type()))) {
std::stringstream errMsg;
errMsg << "variable '" << name << "' previously has type "
<< simple_parent->type()->str()
<< " but is now being assigned to a value of type "
<< as_simple_value->type()->str();
// Special-cased error msg if we're trying to assign to a tensor list.
if (simple_parent->type()->kind() == TypeKind::ListType &&
as_simple_value->type()->kind() == TypeKind::ListType) {
errMsg << "\n. (Note: empty lists are constructed as Tensor[]; "
<< "if you want an empty list of a different type, "
<< "use `torch.jit.annotate(List[T], [])`, "
<< "where `T` is the type of elements in the list)";
}
throw ErrorReport(loc) << errMsg.str();
}
}
if (as_simple_value)
createCapturedInputIfNeeded(loc, name);
value_table[name] = std::move(value);
}
SugaredValuePtr getSugaredVar(const Ident& ident, bool required=true) {
return getSugaredVar(ident.name(), ident.range());
}
Value* getVar(const Ident& ident) {
return getSugaredVar(ident)->asValue(ident.range(), method);
}
SugaredValuePtr getSugaredVar(const std::string& ident, SourceRange range, bool required=true) {
auto retval = createCapturedInputIfNeeded(range, ident);
if(!retval) {
static std::unordered_map<std::string, SugaredValuePtr> globals = {
{"print", std::make_shared<PrintValue>()},
{"float", std::make_shared<CastValue>(FloatType::get())},
{"int", std::make_shared<CastValue>(IntType::get())},
{"bool", std::make_shared<CastValue>(BoolType::get())},
// todo(zach): remove when we can correctly export torch.full via ONNX
// or we have implicit conversion that can convert numbers to tensors
{"_to_tensor", std::make_shared<CastValue>(DynamicType::get()) },
};
auto it = globals.find(ident);
if(it != globals.end())
retval = it->second;
}
if(!retval) {
retval = resolver(ident, method, range);
}
if (!retval && required) {
// check if this value was not emitted in an if statement because of a
// type mismatch. if it was, then we print a more informative error msg
if (auto msg = findVariableTypeError(ident)) {
throw ErrorReport(range) << *msg << "and was used here";
}
throw ErrorReport(range) << "undefined value " << ident;
}
return retval;
}
Value* getVar(const std::string& ident, SourceRange range) {
return getSugaredVar(ident, range)->asValue(range, method);
}
// Given that after emitting statements in a block, we've added block inputs
// for all value references and assignments, delete inputs for which there was
// no assignment, only references.
void deleteExtraInputs(const SourceRange& loc) {
// note: skip i == 0, it is the loop trip count for inputs
// and the loop condition for outputs.
// captured_inputs is indexed by i - 1 since it only contains loop
// carried dependencies
// inputs: loop_counter, lcd0, lcd1, ...
// outputs: loop_condition, lcd0, lcd1, ...
// captured_inputs: lcd0, lcd1, ...
JIT_ASSERT(b->inputs().size() == b->outputs().size());
JIT_ASSERT(b->inputs().size() == captured_inputs.size() + 1);
for(size_t i = b->inputs().size() - 1; i > 0; i--) {
// nothing changed along this loop
if(b->inputs()[i] == b->outputs()[i]) {
auto name = captured_inputs[i - 1];
Value* orig = findInParentFrame(name)->asValue(loc, method);
b->inputs()[i]->replaceAllUsesWith(orig);
b->eraseInput(i);
b->eraseOutput(i);
captured_inputs.erase(captured_inputs.begin() + i - 1);
}
}
}
std::vector<std::string> definedVariables() {
std::vector<std::string> result;
for(auto & kv : value_table) {
result.push_back(kv.first);
}
return result;
}
private:
ValueTable value_table;
};
Value* packOutputs(Graph& g, at::ArrayRef<Value*> values) {
if(values.size() == 1) {
return values[0];
}
return g.insertNode(g.createTuple(values))->output();
}
at::ArrayRef<Value*> createTupleUnpack(Value* v) {
// small peephole optimization to ensure IntList attributes can still turn
// into constants e.g. in x.expand([3, 4])
if(v->node()->kind() == prim::TupleConstruct)
return v->node()->inputs();
auto & g = *v->owningGraph();
return g.insertNode(g.createTupleUnpack(v))->outputs();
}
static inline bool isIntOrFloatUsedAsList(
const Value* value,
const Argument& arg) {
// Look for int[N] or float[N]
auto v_type = value->type();
if (v_type != FloatType::get() && v_type != IntType::get())
return false;
auto list_type = arg.type()->cast<ListType>();
return list_type && list_type->getElementType() == v_type && arg.N();
}
inline bool convertibleToList(TypePtr type, TypePtr list_type_) {
auto list_type = list_type_->cast<ListType>();
if(!list_type) {
return false;
}
if(type->isSubtypeOf(list_type_)) {
return true;
}
if(auto tuple = type->cast<TupleType>()) {
return std::all_of(
tuple->elements().begin(),
tuple->elements().end(),
[&](const TypePtr& t) {
return t->isSubtypeOf(list_type->getElementType());
});
}
return false;
}
// applies implict conversion from value trying to turn it into type concrete_type
// it succeeds if the return_value->isSubclassOf(concrete_type)
Value* tryConvertToType(
const SourceRange& loc,
Graph& graph,
TypePtr concrete_type,
Value* value,
bool convert_tensors_to_nums) {
// Allow homogeneous tuples to be casted implicitly to lists of appropriate
// types
if (convertibleToList(value->type(), concrete_type) &&
value->type()->kind() == TypeKind::TupleType) {
auto unpacked = createTupleUnpack(value);
auto elem_type = concrete_type->expect<ListType>()->getElementType();
value = graph.insertNode(graph.createList(elem_type, unpacked))->output();
}
if (value->type()->isSubtypeOf(NoneType::get()) && !concrete_type->isSubtypeOf(NoneType::get())){
if (concrete_type->isSubtypeOf(GeneratorType::get())) {
value = graph.insertNode(graph.createNoneGenerator())->output();
} else if (concrete_type->isSubtypeOf(OptionalType::ofTensor())) {
// create undefined tensor when None pass to a optional[tensor] formal arg
value = graph.insertNode(graph.createUndefined())->output();
} else if (auto optional_type = concrete_type->cast<OptionalType>()) {
value = graph.insertNode(graph.createNone(optional_type->getElementType()))->output();
}
}
//implicit conversion of tensors to scalars
if(convert_tensors_to_nums && concrete_type->isSubtypeOf(NumberType::get())
&& value->type()->isSubtypeOf(DynamicType::get())) {
auto n = graph.createImplicitTensorToNum(concrete_type, value);
value = graph.insertNode(n)
->setSourceLocation(std::make_shared<SourceRange>(loc))
->output();
}
return value;
}
Value* tryMatchArgument(
const Argument& arg,
Graph& graph,
const SourceRange& loc,
const NamedValue& named_value,
std::function<std::ostream&()> err,
bool convert_tensors_to_nums,
TypeEnv & type_env) {
Value* value = named_value.value(graph);
// some functions that take lists of integers or floats for fixed size arrays
// also allow single ints/floats to be passed in their place.
// the single int/float is then repeated to the length of the list
if (isIntOrFloatUsedAsList(value, arg)) {
std::vector<Value*> repeated(*arg.N(), value);
value = graph.insertNode(graph.createList(value->type(), repeated))->output();
}
const MatchTypeReturn matched_type =
matchTypeVariables(arg.type(), value->type(), type_env);
if (!matched_type.type) {
err() << "could not match type " << value->type()->str() << " to "
<< arg.type()->str() << " in argument '" << arg.name()
<< "': " << matched_type.errMsg << "\n"
<< named_value.locOr(loc);
return nullptr;
}
const auto concrete_type = *matched_type.type;
value = tryConvertToType(loc, graph, concrete_type, value, convert_tensors_to_nums);
if(!value->type()->isSubtypeOf(concrete_type)) {
err() << "expected a value of type " << concrete_type->str() << " for argument '" << arg.name() << "' but found "
<< value->type()->str() << "\n"
<< named_value.locOr(loc);
return nullptr;
}
return value;
}
c10::optional<size_t> findInputWithName(
const std::string& name,
at::ArrayRef<NamedValue> kwargs) {
for(size_t i = 0; i < kwargs.size(); ++i) {
if(kwargs[i].name() == name)
return i;
}
return c10::nullopt;
}
Value* tryCreateList(
TypePtr elem_type,
Graph& graph,
const SourceRange& loc,
at::ArrayRef<NamedValue> varargs,
std::function<std::ostream&()> err,
bool convert_tensor_to_num,
TypeEnv & type_env) {
Argument elem_arg("<varargs>", elem_type);
std::vector<Value*> list_ctor;
for(const auto& a : varargs) {
Value* av = tryMatchArgument(elem_arg, graph, loc, a, err, convert_tensor_to_num, type_env);
if(!av)
return nullptr;
list_ctor.push_back(av);
}
return graph.insertNode(graph.createList(elem_type, list_ctor))->output();
}
template<class T>
static Value* materializeConstant(T val, Graph& graph,
const SourceRange& r, std::unordered_map<T, Value*>& map) {
auto existing_constant = map.find(val);
if (existing_constant != map.end()) {
return existing_constant->second;
}
WithInsertPoint guard(graph.block()->nodes().front());
auto new_constant = graph.insertConstant(val, r);
map[val] = new_constant;
return new_constant;
}
c10::optional<MatchedSchema> tryMatchSchema(
const FunctionSchema& schema,
const SourceRange& loc,
Graph& graph,
c10::optional<NamedValue> self,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
std::ostream& failure_messages,
bool convert_tensors_to_nums) {
auto err = [&]() -> std::ostream& {
failure_messages << "\nfor operator " << schema << ":\n";
return failure_messages;
};
TypeEnv type_env;
std::vector<Value*> positional_inputs;
std::vector<bool> used_kwarg(kwargs.size(), false);
// if we finish the loop will we have consumed all arguments?
size_t used_args = 0;
for (size_t schema_i = 0; schema_i < schema.arguments().size(); ++schema_i) {
const auto& arg = schema.arguments()[schema_i];
c10::optional<NamedValue> v;
if (arg.name() == "self" && self) {
v = self;
self = c10::nullopt;
} else if (!arg.kwarg_only() && used_args < args.size()) {
// allow zeros(IntList sizes) to work with zeros(1, 2) or zeros(1)
if (arg.type()->kind() == TypeKind::ListType && // the formal must be a list
!arg.N() && // it must not be a broadcasting list like int[3], otherwise
// a single int is a valid input
(schema_i + 1 == schema.arguments().size() ||
schema.arguments()[schema_i + 1]
.kwarg_only())) { // must be the last position argument
auto actual_type = args[used_args].value(graph)->type();
if (actual_type->kind() != TypeKind::ListType &&
!convertibleToList(
actual_type,
arg.type())) { // and the actual should not be a list already
auto elem_type = arg.type()->expect<ListType>()->getElementType();
Value* list = tryCreateList(
elem_type,
graph,
loc,
at::ArrayRef<NamedValue>(args).slice(used_args),
err,
convert_tensors_to_nums,
type_env);
if (!list)
return c10::nullopt;
used_args = args.size();
positional_inputs.push_back(list);
continue;
}
}
v = args[used_args];
used_args++;
} else if (auto idx = findInputWithName(arg.name(), kwargs)) {
const NamedValue& nv = kwargs[*idx];
if (used_kwarg[*idx]) {
err() << "argument " << nv.name()
<< " specified twice in schema, submit a bug report!\n"
<< nv.locOr(loc);
return c10::nullopt;
}
used_kwarg[*idx] = true;
v = nv;
} else if (arg.default_value()) {
v = NamedValue(*arg.default_value());
} else {
err() << "argument " << schema.arguments()[schema_i].name()
<< " not provided.\n"
<< loc;
return c10::nullopt;
}
Value* positional = tryMatchArgument(
arg, graph, loc, *v, err, convert_tensors_to_nums, type_env);
if (!positional)
return c10::nullopt;
positional_inputs.push_back(positional);
}
// check for unused self argument
if(self != c10::nullopt) {
err() << "provided self argument not used in schema\n";
}
if (schema.is_vararg()) {
for(;used_args < args.size(); ++used_args) {
positional_inputs.push_back(args[used_args].value(graph));
}
}
// check for unused positional arguments
if (used_args < args.size()) {
err() << "expected at most " << used_args << " arguments "
<< "but found " << args.size() << " positional arguments.\n"
<< loc << "\n";
return c10::nullopt;
}
// check for unused kwargs
for (size_t i = 0; i < kwargs.size(); ++i) {
const auto& nv = kwargs[i];
if (!used_kwarg[i]) {
if (!schema.argumentIndexWithName(nv.name())) {
err() << "keyword argument " << nv.name() << " unknown\n";
} else {
err() << "keyword argument " << nv.name() << " specified twice\n";
}
return c10::nullopt;
}
}
auto return_types = fmap(schema.returns(), [&](const Argument& r) {
return evalTypeVariables(r.type(), type_env);
});
return MatchedSchema{std::move(positional_inputs), std::move(return_types)};
}
static std::string prefixLine(const std::string& str, std::string prefix) {
std::stringstream ss;
bool was_newline = true;
for(auto c : str) {
if(was_newline)
ss << prefix;
ss.put(c);
was_newline = c == '\n';
}
return ss.str();
}
// Given a successful match between operator schema and symbol, emit a node
// with the appropriate inputs and outputs.
static Value* emitBuiltinNode(
const MatchedSchema& matched_schema,
const SourceRange& loc,
Graph& graph,
Symbol name) {
auto n = graph.insertNode(graph.create(name, matched_schema.inputs, 0))
->setSourceLocation(std::make_shared<SourceRange>(loc));
for(auto & ret : matched_schema.return_types) {
n->addOutput()->setType(ret);
}
// assert that we did indeed create an op that has implementation
// otherwise schema and dispatch are not in sync
getOperation(n);
return packOutputs(graph, n->outputs());
}
// Search for operators matching the provided symbol name and input types.
// If one is found, emit a node to the graph for that operator.
Value* emitBuiltinCall(
const SourceRange& loc,
Graph& graph,
Symbol name,
c10::optional<NamedValue> self,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
// if true, emitBuiltinCall will throw an exception if this builtin does not exist,
// otherwise it will return nullptr if the builtin is not found.
bool required) {
const auto& variants = getAllOperatorsFor(name);
const auto& builtin_functions = getAllBuiltinFunctionsFor(name);
std::stringstream failure_messages;
//first we try to match the schema without any conversion
//if no schema matches then insert ImplicitTensorToNum
for (bool convert_tensors_to_nums : {false, true}) {
// clear previous error messages
failure_messages.str("");
for (const std::shared_ptr<Operator>& op : variants) {
const auto matched_schema = tryMatchSchema(
op->schema(),
loc,
graph,
self,
inputs,
attributes,
failure_messages,
convert_tensors_to_nums);
if (matched_schema) {
return emitBuiltinNode(*matched_schema, loc, graph, name);
}
}
for (Method* method : builtin_functions) {
if (auto result = try_emit_call_to(
graph,
loc,
*method,
self,
inputs,
attributes,
failure_messages,
nullptr,
convert_tensors_to_nums)) {
return packOutputs(graph, *result);
}
}
}
// none of the options worked
if (!required) {
return nullptr;
}
if(variants.size() == 0) {
throw ErrorReport(loc) << "unknown builtin op";
}
throw ErrorReport(loc) << "arguments for call are not valid:\n"
<< prefixLine(failure_messages.str(), " ")
<< "for call at";
}
static Value* ensureInt(const SourceRange& range, Value* v) {
if(!v->type()->isSubtypeOf(IntType::get())) {
throw ErrorReport(range) << "expected a int but found a "
<< v->type()->str();
}
return v;
}
std::shared_ptr<SugaredValue> BuiltinFunction::call(
SourceRange loc,
Method& m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) {
return std::make_shared<SimpleValue>(emitBuiltinCall(
loc, *m.graph(), symbol, self, inputs, attributes, true));
}
inline bool isSupportedListElementType(TypePtr type) {
return type->isSubtypeOf(DynamicType::get()) ||
type->isSubtypeOf(NumberType::get());
}
static FunctionSchema extractSchemaFromDef(const Def &def, bool is_method);
TypePtr parseTypeFromExpr(Expr expr);
struct to_ir {
to_ir(
Def def,
Resolver resolver_,
SugaredValuePtr self,
Method& method) // method being constructed
: method(method)
, graph(method.graph())
, def(def)
, resolver(std::move(resolver_))
, environment_stack(nullptr) {
JIT_ASSERT(resolver);
pushFrame(graph->block());
auto schema = extractSchemaFromDef(def, bool(self));
std::vector<Argument> arguments, returns; // for schema
// inputs
auto it = def.decl().params().begin();
auto end = def.decl().params().end();
// Type annotations exclude explicitly typing the "self" parameter, so in the
// case that this is a method with self we expect one fewer parameter annotation
// than the number of parameters this Def takes.
if (self && def.decl().params().size() == 0) {
throw ErrorReport(def.decl().params().range()) << "methods must have a self argument";
}
auto expected_annotation_size = self ? def.decl().params().size() - 1 : def.decl().params().size();
if (schema.arguments().size() != expected_annotation_size) {
throw ErrorReport(def.decl().params().range()) << "Number of type annotations for"
<< " function parameters (" << arguments.size() << ")"
<< " does not match the number of parameters on the function ("
<< expected_annotation_size << ")!";
}
if(self) {
if(it == end)
throw ErrorReport(def.decl().params().range()) << "methods must have a self argument";
environment_stack->setSugaredVar(def.range(), (*it).ident().name(), self);
++it;
}
size_t arg_annotation_idx = 0;
for(;it != end; ++it) {
auto& name = (*it).ident().name();
// Add the input to the graph
Value *new_input = graph->addInput(name);
environment_stack->setVar((*it).ident().range(), name, new_input);
// Record the type for the schema and set the Type on the Value*
arguments.push_back(schema.arguments().at(arg_annotation_idx++));
new_input->setType(arguments.back().type());
}
// body
auto stmts = def.statements();
auto stmts_begin = stmts.begin();
auto stmts_end = stmts.end();
bool has_return = false;
if (stmts_begin != stmts_end && (*std::prev(stmts_end)).kind() == TK_RETURN) {
--stmts_end;
has_return = true;
}
emitStatements(stmts_begin, stmts_end);
// outputs
if (has_return) {
auto return_stmt = Return(*stmts_end);
auto results = getValues(return_stmt.values(), true);
// a single return value that is a tuple expands in place:
// return a
if (return_stmt.values().size() == 1 && results.size() == 1) {
auto result = results.at(0);
if(result->type()->cast<TupleType>()) {
results = createTupleUnpack(result).vec();
}
}
if (!schema.is_varret() && schema.returns().size() != results.size()) {
throw ErrorReport(def.range()) << "Number of type annotations for function"
<< " return (" << schema.returns().size() << ") does not match"
<< " the number of returns from the function (" << results.size() << ")!";
}
auto range = return_stmt.range();
size_t return_type_idx = 0;
for (auto r : results) {
TypePtr type = DynamicType::get();
if (!schema.is_varret()) {
type = schema.returns().at(return_type_idx).type();
r = tryConvertToType(range, *graph, type, r, /*convert_tensors_to_nums=*/false);
if (!r->type()->isSubtypeOf(type)) {
throw ErrorReport(return_stmt.range()) << "Return value at position "
<< return_type_idx << " was annotated as having type " << type->str()
<< " but is actually of type " << r->type()->str();
}
return_type_idx++;
}
graph->registerOutput(r);
returns.emplace_back("", type);
}
} else if (schema.returns().size() > 0) {
// schema has returns but there's no return nodes in graph
throw ErrorReport() << "Expected " << schema.returns().size()
<< " return value"
<< (schema.returns().size() > 1 ? "s" : "")
<< " but found no return statement";
}
method.setSchema({def.name().name(), std::move(arguments), std::move(returns)});
// remove any uses of tuples that we inserted that are not needed
LowerSimpleTuples(graph);
ConstantPooling(graph);
}
private:
Method& method;
std::shared_ptr<Graph> graph;
Def def;
Resolver resolver;
std::unordered_map<int64_t, Value*> integral_constants;
std::unordered_map<double, Value*> fp_constants;
// Singly-linked list of environments. This top element contains a member
// `next` that points to the most immediate enclosing scope's value.
std::shared_ptr<Environment> environment_stack;
void pushFrame(Block * b) {
environment_stack = std::make_shared<Environment>(method, resolver, b, environment_stack);
}
std::shared_ptr<Environment> popFrame() {
auto old_frame = environment_stack;
environment_stack = environment_stack->next;
return old_frame;
}
void emitStatements(const List<Stmt>& statements) {
return emitStatements(statements.begin(), statements.end());
}
void emitStatements(List<Stmt>::const_iterator begin, List<Stmt>::const_iterator end) {
for (; begin != end; ++begin) {
auto stmt = *begin;
switch (stmt.kind()) {
case TK_IF:
emitIf(If(stmt));
break;
case TK_WHILE:
emitWhile(While(stmt));
break;
case TK_FOR:
emitFor(For(stmt));
break;
case TK_ASSIGN:
emitAssignment(Assign(stmt));
break;
case TK_AUG_ASSIGN:
emitAugAssignment(AugAssign(stmt));
break;
case TK_GLOBAL:
for (auto ident : Global(stmt).names()) {
const auto& name = Ident(ident).name();
environment_stack->setVar(ident.range(), name, graph->addInput(name));
}
break;
case TK_EXPR_STMT: {
auto expr = ExprStmt(stmt).expr();
emitSugaredExpr(expr, 0);
}
break;
case TK_RAISE:
emitRaise(Raise(stmt).range());
break;
case TK_ASSERT:
emitAssert(Assert(stmt));
break;
case TK_RETURN:
throw ErrorReport(stmt) << "return statements can appear only at the end "
<< "of the function body";
break;
case TK_PASS:
// Emit nothing for pass
break;
default:
throw ErrorReport(stmt)
<< "Unrecognized statement kind " << kindToString(stmt.kind());
}
}
}
std::shared_ptr<Environment> emitSingleIfBranch(
Block* b,
const List<Stmt> branch) {
pushFrame(b);
WithInsertPoint guard(b);
emitStatements(branch);
return popFrame();
}
Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) {
return graph
->create(kind, n_outputs)
->setSourceLocation(std::make_shared<SourceRange>(loc));
}
Value* emitTernaryIf(const TernaryIf& expr) {
Value* cond_value = emitCond(expr.cond());
auto true_expr = [&] {
return emitExpr(expr.true_expr());
};
auto false_expr = [&] {
return emitExpr(expr.false_expr());
};
return emitIfExpr(expr.range(), cond_value, true_expr, false_expr);
}
Value* emitShortCircuitIf(
const SourceRange& loc,
const TreeRef & first_expr,
const TreeRef & second_expr,
bool is_or) {
Value * first_value = emitCond(Expr(first_expr));
auto get_first_expr = [first_value] {
return first_value;
};
auto get_second_expr = [&] {
return emitCond(Expr(second_expr));
};
// if this is an OR, eval second expression if first expr is False.
// If this is an AND, eval second expression if first expr is True
if (is_or) {
return emitIfExpr(loc, first_value, get_first_expr, get_second_expr);
} else {
return emitIfExpr(loc, first_value, get_second_expr, get_first_expr);
}
}
Value* emitIfExpr(const SourceRange& range, Value * cond_value,
std::function<Value*()> true_expr, std::function<Value*()> false_expr) {
Node* n = graph->insertNode(create(prim::If, range, 0));
n->addInput(cond_value);
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
auto emit_if_expr = [this](Block* b, std::function<Value*()> expr_value) {
pushFrame(b);
WithInsertPoint guard(b);
Value* out_val = expr_value();
b->registerOutput(out_val);
popFrame();
};
emit_if_expr(true_block, true_expr);
emit_if_expr(false_block, false_expr);
auto true_type = unshapedType(true_block->outputs().at(0)->type());
auto false_type = unshapedType(false_block->outputs().at(0)->type());
if (*true_type != *false_type) {
throw ErrorReport(range)
<< "if-expression's true branch has type " << true_type->str()
<< " but false branch has type " << false_type->str();
}
// Add op outputs
auto expr_value = n->addOutput()->setType(true_type); // Resulting value
return expr_value;
}
Value* emitCond(Expr cond) {
Value* v = emitExpr(cond);
if (!v->type()->isSubtypeOf(BoolType::get())) {
ErrorReport error(cond);
error << "expected a boolean expression for condition but found "
<< v->type()->str();
if (v->type()->isSubtypeOf(DynamicType::get())) {
error << ", to use a tensor in a boolean"
<< " expression, explicitly cast it with `bool()`";
}
throw error;
}
return v;
}
void emitIf(const If& stmt) {
Value* cond_value = emitCond(stmt.cond());
Node* n = graph->insertNode(create(prim::If, stmt.range(), 0));
n->addInput(cond_value);
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
// Emit both blocks once to get the union of all mutated values
auto save_true = emitSingleIfBranch(true_block, stmt.trueBranch());
auto save_false = emitSingleIfBranch(false_block, stmt.falseBranch());
// In python, every variable assigned in an if statement escapes
// the scope of the if statement (all variables are scoped to the function).
// Script is a subset of python: we consider variables to be in scope
// as long as there is a definition of the variable along all paths
// through the if statemnent
// ----
// if ...:
// a =
// else:
// ...
// ... = a # error, a is not defined along all paths
// ----
// if ...:
// a =
// else:
// a =
// ... = a # OK, a is defined along all paths
// ----
// a = ...
// if ...:
// a =
// ... = a # OK, a is defined along all paths
//ordered set, because we want deterministic graph output
std::set<std::string> mutated_variables;
for(auto & v : save_true->definedVariables()) {
if(save_false->findInAnyFrame(v)) {
mutated_variables.insert(v);
}
}
for(auto & v : save_false->definedVariables()) {
if(save_true->findInAnyFrame(v)) {
mutated_variables.insert(v);
}
}
// Register outputs in each block
for (const auto& x : mutated_variables) {
auto tv = save_true->getVar(x, stmt.range());
auto fv = save_false->getVar(x, stmt.range());
auto unified = unifyTypes(tv->type(), fv->type());
// attempt to unify the types. we allow variables to be set to different types
// in each branch as long as that variable is not already in scope,
// or if that variable does not get used later. here, we save the error
// so that the error message will be more informative in the case that is
// used later. When a is accessed in (a + 1), the error will get printed
// if cond:
// a = 1
// else:
// a = tensor
// b = a + 1
//
if (!unified) {
ErrorReport error(stmt);
error << "Type mismatch: " << x << " is set to type " << tv->type()->str() << " in the true branch"
<< " and type " << fv->type()->str() << " in the false branch";
if (save_true->findInParentFrame(x) || save_false->findInParentFrame(x)) {
throw error;
} else {
// error gets saved in the lowest environment because all
// variables are scoped to the function. doesn't matter if this accessed
// through save_true or save_false
save_true->setVariableTypeError(x, error.what());
continue;
}
}
true_block->registerOutput(tv);
false_block->registerOutput(fv);
environment_stack->setVar(stmt.range(), x, n->addOutput()->setType(*unified));
}
}
// *********************** Loop Operators ************************************
// Emits a loop operators conforming to the semantics specified at
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#experimental-loop
// TODO: implement scan_outputs
// the format of the Loop instruction is:
// loop_carried_outputs* = Loop(max_trip_count, start_condition,
// loop_carried_inputs*)
// block0(loop_counter, loop_carried_block*) {
// <body>
// -> (continue_condition,
// loop_carried_block_outputs*)
// }
// all loop_carried_... lists are the same length and represent the value of
// loop-carried variables whose definitions are updated as the loop executes
// in a way that ensure single static assignment.
void emitLoopCommon(
SourceRange range,
c10::optional<Expr> max_trip_count,
c10::optional<Expr> cond,
const List<Stmt>& body,
c10::optional<Ident> itr_ident) {
Node* n = graph->insertNode(create(prim::Loop, range, 0));
Value *max_trip_count_val, *cond_val;
{
WithInsertPoint guard(n);
if (max_trip_count) {
max_trip_count_val = ensureInt(
max_trip_count->range(), emitExpr(max_trip_count.value()));
} else {
max_trip_count_val =
materializeConstant(std::numeric_limits<int64_t>::max(), *graph, range, integral_constants);
}
if (cond) {
cond_val = emitCond(cond.value());
} else {
cond_val = graph->insertConstant(true, range);
}
}
n->addInput(max_trip_count_val);
n->addInput(cond_val);
auto* body_block = n->addBlock();
Value* trip_count = body_block->addInput()->setType(IntType::get()); // Iteration num
{
pushFrame(body_block);
if (itr_ident) {
environment_stack->setVar(itr_ident->range(), itr_ident->name(), trip_count);
}
WithInsertPoint guard(body_block);
emitStatements(body);
// Also emit the conditional
if (cond) {
Value* body_cond_value = emitCond(cond.value());
body_block->registerOutput(body_cond_value);
} else {
Value* cond_value_dummy = graph->insertConstant(true, range);
body_block->registerOutput(cond_value_dummy);
}
auto body_frame = popFrame();
auto outer_frame = environment_stack;
// Add block outputs to correspond to each captured input
// some of these will be removed.
for (const auto& x : body_frame->captured_inputs) {
auto fv = body_frame->getValueInThisFrame(range, x);
body_block->registerOutput(fv);
}
// Remove inputs for values that did not mutate within the
// block
body_frame->deleteExtraInputs(range);
// register node inputs/outputs for the true loop carried deps,
for(size_t i = 0; i < body_frame->captured_inputs.size(); ++i) {
auto x = body_frame->captured_inputs[i];
n->addInput(outer_frame->getVar(x, range));
// body_block->inputs(): loop_counter, lcd0, lcd1, ...
// captured_inputs: lcd0, lcd1, ...
auto typ = body_block->inputs()[i + 1]->type();
outer_frame->setVar(range, x, n->addOutput()->setType(typ));
}
}
}
void emitForRange(SourceRange range, const Ident& target, const List<Expr>& args, const List<Stmt>& body) {
// TODO: start, stop, step loop
if (args.size() != 1) {
throw ErrorReport(range)
<< "range() expects 1 argument but got " << args.size();
}
emitLoopCommon(range, {args[0]}, {}, body, target);
}
void emitFor(const For& stmt) {
// For now, we only support range loops. e.g. for i in range(3): ...
auto targets = stmt.targets();
auto itrs = stmt.itrs();
auto body = stmt.body();
if (stmt.itrs().size() != 1) {
throw ErrorReport(stmt)
<< "List of iterables is not supported currently.";
}
if (targets.size() != 1) {
throw ErrorReport(stmt) << "Iteration variable unpacking is not supported";
}
if (targets[0].kind() != TK_VAR) {
throw ErrorReport(targets[0]) << "unexpected expression in variable initialization of for loop";
}
auto target = Var(targets[0]).name();
// match range(<expr>) style loops
// itrs must consist of a single Apply node
if (itrs[0].kind() == TK_APPLY) {
Apply range_iterator = Apply(itrs[0]);
if (range_iterator.callee().kind() == TK_VAR) {
Var var = Var(range_iterator.callee());
if (var.name().name() == "range") {
return emitForRange(stmt.range(), target, range_iterator.inputs(), body);
}
}
}
// it isn't a range(<expr>) loop, treat it as a sugared value that maybe can be
// unrolled
auto sv = emitSugaredExpr(itrs[0], 1);
auto instances = sv->asTuple(stmt.range(), method);
const std::string& target_name = target.name();
pushFrame(environment_stack->block());
for(auto inst : instances) {
environment_stack->setSugaredVar(itrs[0].range(), target_name, inst);
emitStatements(body);
}
for (const auto & n : environment_stack->definedVariables()) {
if (environment_stack->findInParentFrame(n)) {
environment_stack->next->setVar(stmt.range(), n, environment_stack->getVar(n, stmt.range()));
}
}
popFrame();
}
void emitWhile(const While& stmt) {
auto cond = stmt.cond();
emitLoopCommon(stmt.range(), {}, {cond}, stmt.body(), {});
}
// Currently we do not support assigning exceptions to variables,
// a = Exception("hi")
// raise a
//
// We ignore the expression following raise
//
// NYI: add exception logic to control-flow nodes
// if True:
// a = 1
// else
// raise Exception("Hi")
// print(a)
void emitRaise(const SourceRange& loc) {
const std::string exception = "Exception";
auto string_input = insertConstant(*graph, exception, loc);
graph->insert(prim::RaiseException, {string_input}, {}, loc);
}
void emitAssert(const Assert& stmt) {
Value* cond_value = emitCond(stmt.test());
Node* n = graph->insertNode(create(prim::If, stmt.range(), 0));
n->addInput(cond_value);
/* true_block =*/n->addBlock();
auto* false_block = n->addBlock();
//if assert test is false throw exception
pushFrame(false_block);
WithInsertPoint guard(false_block);
emitRaise(stmt.range());
popFrame();
}
// Validate that the `lhs` Expr's in an assignment statement are valid. That
// is:
//
// 1) All lhs Expr's are either Var or Starred nodes
// 2) There is at most one Starred node in the lhs Expr
// 3) A Starred node can only appear when there is another non-Starred lhs Expr
// Concretely this means that `*abc = func()` is illegal. Unpacking all
// outputs into a tuple is covered by `abc = func()`.
bool calcNumStarredUnpack(const List<Expr>& lhs, const SourceRange& r) {
size_t num_normal_assign = 0;
size_t num_starred = 0;
for (const auto& assignee : lhs) {
if (assignee.kind() == TK_VAR || assignee.kind() == TK_SUBSCRIPT) {
num_normal_assign++;
} else if (assignee.kind() == TK_STARRED) {
num_starred++;
} else {
throw ErrorReport(assignee) << "lhs of assignment must be a variable, "
<< "subscript, or starred expression.";
}
}
if (num_starred > 1) {
throw ErrorReport(r)
<< "Only one starred expression is allowed on the lhs.";
}
if (num_starred > 0 && num_normal_assign == 0) {
throw ErrorReport(r) << "A Starred expression may only appear on the "
<< "lhs within the presence of another non-starred"
<< " expression.";
}
return num_starred;
}
// Get the appropriate builtin op for this augmented assignment
// If the RHS is a tensor, return the corresponding ATen in-place op
// If it's a list of scalars, then return the corresponding list augment op
Symbol getAugOp(const AugAssign& stmt, bool isTensor) {
switch (stmt.aug_op()) {
case '+':
return isTensor ? aten::add_ : aten::add;
case '-':
return isTensor ? aten::sub_ : aten::sub;
case '/':
return isTensor ? aten::div_ : aten::div;
case '*':
return isTensor ? aten::mul_ : aten::mul;
default:
throw ErrorReport(stmt) << "Unknown augmented assignment: "
<< kindToString(stmt.aug_op());
}
}
// Emit nodes for augmented assignments like `+=`
void emitAugAssignment(const AugAssign& stmt) {
switch (stmt.lhs().kind()) {
case TK_VAR: {
emitAugAssignmentToVar(stmt);
} break;
case '.': {
emitAugAssignmentToSelectVar(stmt);
} break;
case TK_SUBSCRIPT: {
emitAugAssignmentToSubscript(stmt);
} break;
default:
throw ErrorReport(stmt.lhs())
<< "unexpected expression on "
<< "left-hand side of augmented assignment.";
}
}
// This will be called when there is a class param or module buffer
// mutation which make the LHS of the expr be a select expression
//
// Example like:
// class A(Module):
// def __init__():
// self.register_buffer("running_var", torch.zeros(1))
//
// def forward():
// self.num_batches += 1
//
// In this case we will only consider the scenario that the module
// buffer type is a tensor, and we emit the corresponding tensor
// in place op, and throw error for other unsupported types
void emitAugAssignmentToSelectVar(const AugAssign& stmt) {
const auto lhs = Select(stmt.lhs());
const auto lhsSugaredVar = environment_stack->getSugaredVar(Var(lhs.value()).name());
const auto lhsValue = lhsSugaredVar->attr(lhs.range(), method, lhs.selector().name())->asValue(lhs.range(), method);
if (lhsValue->type()->isSubtypeOf(DynamicType::get())) {
// for module parameter/buffer assignment, only consider tensor types,
// emit the corresponding in-place op
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
const auto self = NamedValue(stmt.lhs().range(), "self", lhsValue);
emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, /*isTensor=*/true),
self,
{rhs},
{},
/*required=*/true);
} else {
throw ErrorReport(stmt.lhs())
<< "left-hand side of augmented assignment to module "
<< "parameters/buffers can only be tensor types";
}
}
void emitAugAssignmentToVar(const AugAssign& stmt) {
const auto lhs = Var(stmt.lhs());
const auto lhsValue = environment_stack->getSugaredVar(lhs.name())
->asValue(lhs.range(), method);
if (lhsValue->type()->isSubtypeOf(DynamicType::get())) {
// for tensors, emit the corresponding in-place op
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
const auto self = NamedValue(stmt.lhs().range(), "self", lhsValue);
const auto output = emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, /*isTensor=*/true),
self,
{rhs},
{},
/*required=*/true);
environment_stack->setVar(lhs.range(), lhs.name().name(), output);
} else {
// for primitive types, desugar into a simple assignment
// e.g. foo += 1 becomes foo.2 = foo + 1
Ident lhs = Var(stmt.lhs()).name();
Expr expr = BinOp::create(
stmt.range(),
stmt.aug_op(),
Var::create(lhs.range(), lhs),
stmt.rhs());
environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr));
}
}
void emitAugAssignmentToSubscript(const AugAssign& stmt) {
// Process the base list value
const auto lhs = Subscript(stmt.lhs());
const auto sliceable = emitExpr(lhs.value());
if (sliceable->type()->isSubtypeOf(DynamicType::get())) {
// If it's a tensor, just fully evaluate the subscript operation and emit
// an in-place assignment
const auto lhsValue =
emitSubscript(lhs.range(), sliceable, lhs.subscript_exprs());
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
const auto self = NamedValue(stmt.lhs().range(), "self", lhsValue);
emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, /*isTensor=*/true),
self,
{rhs},
{},
/*required=*/true);
} else {
// Otherwise, it should be a list. Lower this expression into:
// list.set_item(get_item(idx).add_(value))
// similar to how Python handles things.
const auto listType = sliceable->type()->cast<ListType>();
JIT_ASSERT(listType != nullptr);
bool isTensorList =
listType->getElementType()->isSubtypeOf(DynamicType::get());
// Get the idx to augment
const auto subscriptExprs = lhs.subscript_exprs();
if (subscriptExprs.size() != 1) {
throw ErrorReport(subscriptExprs)
<< "Sliced expression not yet supported for"
<< " subscripted list augmented assignment. "
<< "File a bug if you want this.";
}
const auto idxValue = emitExpr(subscriptExprs[0]);
const auto listArg = NamedValue(lhs.value().range(), "list", sliceable);
const auto idxArg = NamedValue(subscriptExprs.range(), "idx", idxValue);
const auto valueArg =
NamedValue(stmt.rhs().range(), "value", emitExpr(stmt.rhs()));
const auto getItem = emitBuiltinCall(
stmt.range(),
*method.graph(),
aten::select,
c10::nullopt,
{listArg, idxArg},
{},
/*required=*/true);
const auto augmentedItem = emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, isTensorList),
{},
{getItem, valueArg},
{},
/*required=*/true);
emitBuiltinCall(
stmt.range(),
*method.graph(),
aten::_set_item,
c10::nullopt,
{listArg, idxArg, augmentedItem},
{},
/*required=*/true);
}
}
// Emit mutating assignments like `foo[0] = bar`
void emitSubscriptAssign(
const SourceRange& stmtRange,
const Subscript& lhs,
const Expr& rhs) {
emitSubscriptAssign(
stmtRange, lhs, NamedValue(rhs.range(), emitExpr(rhs)));
}
void emitSubscriptAssign(
const SourceRange& stmtRange,
const Subscript& lhs,
const NamedValue& rhs) {
// First check the base value.
auto sliceable = emitExpr(lhs.value());
// If it's a tensor, copy the RHS data into it
if (sliceable->type()->isSubtypeOf(DynamicType::get())) {
std::vector<NamedValue> args;
// Obtain the sliced value
auto lhsValue =
emitSubscript(lhs.range(), sliceable, lhs.subscript_exprs());
args.emplace_back(lhs.range(), "t", lhsValue);
args.emplace_back(rhs.loc(), "other", rhs.value(*graph));
emitBuiltinCall(
stmtRange,
*method.graph(),
aten::copy_,
c10::nullopt,
args,
{},
true);
// Otherwise, this is a list. Dispatch to aten::_set_item to both select and
// assign
} else {
const auto subscript = lhs.subscript_exprs();
if (subscript.size() != 1 || subscript[0].kind() == TK_SLICE_EXPR) {
throw ErrorReport(subscript)
<< "Sliced expression not yet supported for"
<< " subscripted list assignment. "
<< "File a bug if you want this.";
}
std::vector<NamedValue> args;
args.emplace_back(lhs.value().range(), "list", sliceable);
args.emplace_back(
lhs.subscript_exprs().range(), "idx", emitExpr(subscript[0]));
args.push_back(rhs);
emitBuiltinCall(
stmtRange,
*method.graph(),
aten::_set_item,
c10::nullopt,
args,
{},
true);
}
}
void emitTupleAssign(const TupleLiteral& tl, const Expr& rhs) {
size_t n_binders = tl.inputs().size();
bool starred_unpack = calcNumStarredUnpack(tl.inputs(), tl.range());
if(starred_unpack)
n_binders--;
auto output = emitSugaredExpr(rhs, n_binders);
auto outputs = output->asTuple(
rhs.range(),
method,
starred_unpack ? c10::nullopt : c10::optional<size_t>{n_binders});
if(outputs.size() < n_binders) {
throw ErrorReport(tl)
<< "need " << (starred_unpack ? "at least " : "")
<< n_binders << " values to unpack but found only "
<< outputs.size();
}
if(outputs.size() > n_binders && !starred_unpack) {
throw ErrorReport(tl)
<< "too many values to unpack: need " << n_binders << " but found "
<< outputs.size();
}
int i = 0;
for (auto assignee : tl.inputs()) {
switch (assignee.kind()) {
case TK_SUBSCRIPT:
emitSubscriptAssign(
rhs.range(),
Subscript(assignee),
NamedValue(
rhs.range(), outputs.at(i)->asValue(rhs.range(), method)));
i++;
break;
case TK_VAR:
environment_stack->setSugaredVar(assignee.range(), Var(assignee).name().name(), outputs.at(i));
i++;
break;
case TK_STARRED: {
auto var = Starred(assignee).expr();
if (var.kind() != TK_VAR) {
throw ErrorReport(var) << "Cannot pack a tuple into a non-variable.";
}
size_t n_matched = outputs.size() - n_binders;
ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs;
auto values = fmap(outputs_ref.slice(i, n_matched), [&](const std::shared_ptr<SugaredValue>& v) {
return v->asValue(assignee.range(), method);
});
auto tup = graph->insertNode(graph->createTuple(values))->output();
environment_stack->setVar(
var.range(), Var(var).name().name(), tup);
i += n_matched;
} break;
default:
throw ErrorReport(assignee) << "unexpected expression on the left-hand side";
}
}
}
void emitAssignment(const Assign& stmt) {
switch(stmt.lhs().kind()) {
case TK_VAR: {
auto v = Var(stmt.lhs());
environment_stack->setSugaredVar(
v.range(), v.name().name(), emitSugaredExpr(stmt.rhs(), 1));
} break;
case TK_TUPLE_LITERAL:
emitTupleAssign(TupleLiteral(stmt.lhs()), stmt.rhs());
break;
case TK_SUBSCRIPT:
emitSubscriptAssign(stmt.range(), Subscript(stmt.lhs()), stmt.rhs());
break;
default:
throw ErrorReport(stmt.lhs()) << "unexpected expression on left-hand side of assignment.";
}
}
NodeKind getNodeKind(int kind, int ninputs) {
switch (kind) {
case '+':
return aten::add;
case '-':
return aten::sub;
case TK_UNARY_MINUS:
return aten::neg;
case '*':
return aten::mul;
case TK_POW:
return aten::pow;
case '@':
return aten::matmul;
case TK_STARRED:
return prim::Starred;
case '/':
return aten::div;
case '%':
return aten::remainder;
case TK_NE:
return aten::ne;
case TK_EQ:
return aten::eq;
case '<':
return aten::lt;
case '>':
return aten::gt;
case TK_LE:
return aten::le;
case TK_GE:
return aten::ge;
case TK_AND:
return aten::__and__;
case TK_OR:
return aten::__or__;
case TK_IS:
return aten::__is__;
case TK_ISNOT:
return aten::__isnot__;
case TK_NOT:
return aten::__not__;
case TK_FLOOR_DIV:
return aten::floordiv;
case '&':
return aten::__and__;
case '|':
return aten::__or__;
case '^':
return aten::__xor__;
default:
throw std::runtime_error("unknown kind " + std::to_string(kind));
}
}
std::vector<NamedValue> getNamedValues(
TreeList trees,
bool maybe_unpack) {
std::vector<NamedValue> values;
for (const auto& tree : trees) {
if(maybe_unpack && tree->kind() == TK_STARRED) {
auto starred = Starred(tree);
auto entries = emitSugaredExpr(starred.expr(), 1)->asTuple(starred.range(), method);
for(auto entry : entries) {
values.emplace_back(
tree->range(), entry->asValue(starred.range(), method));
}
} else {
values.emplace_back(tree->range(), emitExpr(Expr(tree)));
}
}
return values;
}
std::vector<NamedValue> getNamedValues(
List<Expr> trees,
bool maybe_unpack) {
return getNamedValues(trees.tree()->trees(), maybe_unpack);
}
std::vector<Value*> getValues(
TreeList trees,
bool maybe_unpack) {
return toValues(*graph, getNamedValues(trees, maybe_unpack));
}
std::vector<Value*> getValues(
List<Expr> trees,
bool maybe_unpack) {
return getValues(trees.tree()->trees(), maybe_unpack);
}
std::vector<NamedValue> emitAttributes(const List<Attribute> attributes) {
return fmap(attributes, [&](const Attribute& attr) {
return NamedValue(attr.range(), attr.name().name(), emitExpr(attr.value()));
});
}
std::shared_ptr<SugaredValue> emitApplyExpr(Apply &apply, size_t n_binders) {
auto sv = emitSugaredExpr(apply.callee(), 1);
auto loc = apply.callee().range();
if (auto fork_value = dynamic_cast<ForkValue*>(sv.get())) {
auto& trees = apply.inputs().tree()->trees();
if (trees.size() < 1) {
throw ErrorReport(loc) << "Expected at least one argument to fork()";
}
auto forked = emitSugaredExpr(Expr(trees[0]), 1);
TreeList sliced_trees(trees.begin() + 1, trees.end());
auto inputs = getNamedValues(sliced_trees, true);
auto attributes = emitAttributes(apply.attributes());
return emitForkExpr(loc, forked, inputs, attributes);
} else if (auto annotate_value = dynamic_cast<AnnotateValue*>(sv.get())) {
if (apply.inputs().size() != 2) {
throw ErrorReport(loc)
<< "expected exactly two arguments to attribute but found "
<< apply.inputs().size();
}
if (apply.attributes().size() > 0) {
throw ErrorReport(loc) << "attribute takes no keyword arguments";
}
TypePtr type = parseTypeFromExpr(apply.inputs()[0]);
Value* expr = tryConvertToType(
apply.range(),
*graph,
type,
emitExpr(apply.inputs()[1], type),
/*convert_tensors_to_nums=*/true);
if (!expr->type()->isSubtypeOf(type)) {
throw ErrorReport(apply.inputs())
<< "expected an expression of type " << type->python_str()
<< " but found " << expr->type()->python_str();
}
return std::make_shared<SimpleValue>(expr);
} else {
auto inputs = getNamedValues(apply.inputs(), true);
auto attributes = emitAttributes(apply.attributes());
return sv->call(loc, method, inputs, attributes, n_binders);
}
}
Value* emitExpr(Expr tree, TypePtr type_hint = nullptr) {
return emitSugaredExpr(tree, 1, type_hint)->asValue(tree.range(), method);
}
NodeKind reverseComparision(NodeKind kind) {
if (kind == aten::lt) {
return aten::gt;
} else if (kind == aten::le) {
return aten::ge;
} else if (kind == aten::gt) {
return aten::lt;
} else if (kind == aten::ge) {
return aten::le;
}
throw std::runtime_error("reverseComparision: unsupported NodeKind. File a bug");
}
// any expression that can produce a SugaredValue is handled here
// expressions that only return a single Value* are handled in emitSimpleExpr
// type_hint is set if there is a type that this value is expected to be
// e.g. a : List[int] = []
// or a = torch.jit.annotate(List[int], [])
// the caller is responsible for checking that the result matches type_hint
// emitSugaredExpr is free to ignore it.
std::shared_ptr<SugaredValue> emitSugaredExpr(Expr tree, size_t n_binders, TypePtr type_hint=nullptr) {
switch(tree.kind()) {
case TK_VAR:
return environment_stack->getSugaredVar(Var(tree).name());
case '.': {
auto select = Select(tree);
auto sv = emitSugaredExpr(select.value(), 1);
return sv->attr(select.range(), method, select.selector().name());
}
case TK_APPLY: {
auto apply = Apply(tree);
return emitApplyExpr(apply, n_binders);
} break;
default:
return std::make_shared<SimpleValue>(emitSimpleExpr(tree, type_hint));
}
}
Value * emitNegate(const TreeRef& tree) {
const auto& inputs = tree->trees();
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
auto neg_val = emitBuiltinCall(
tree->range(),
*method.graph(),
aten::neg,
c10::nullopt,
named_values,
{},
/*required=*/true);
// constant fold the input if possible
auto maybe_constant_input = toIValue(neg_val->node()->input());
if (!maybe_constant_input) {
return neg_val;
}
auto op = getOperation(neg_val->node());
Stack stack;
stack.push_back(*maybe_constant_input);
op(stack);
JIT_ASSERT(stack.size() == 1);
return graph->insertConstant(stack[0], tree->range());
}
// This function extract a new graph from its original subgraph
std::shared_ptr<SugaredValue> emitForkExpr(
SourceRange loc,
const std::shared_ptr<SugaredValue> &forked,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes) {
// Build the fork node without inputs
auto fork_node = method.graph()->insertNode(method.graph()->create(prim::fork, 1))
->setSourceLocation(std::make_shared<SourceRange>(loc));
auto body_block = fork_node->addBlock();
// Build a template of the graph to be executed
Value *node_output;
{
WithInsertPoint guard(body_block);
auto fn_sugared_output = forked->call(loc, method, inputs, attributes, 1);
auto fn_simple_output = fn_sugared_output->asValue(loc, method);
body_block->registerOutput(fn_simple_output);
node_output = fork_node->output()->setType(FutureType::create(fn_simple_output->type()));
}
// Fork a new graph from its orignal owning graph
auto forked_graph = std::make_shared<Graph>();
// Make sure we capture everything in the new graph.
// The uncaptured values will be added to the fork signature.
std::unordered_map<Value*, Value*> uncaptures_map;
auto env = [&](Value* v) -> Value* {
if (!uncaptures_map.count(v)) {
// Capture values for both graphs
uncaptures_map[v] = forked_graph->addInput()->copyMetadata(v);
fork_node->addInput(v);
}
return uncaptures_map[v];
};
forked_graph->block()->cloneFrom(body_block, env);
// Separate the subgraph and clean up the orignal one
fork_node->g_(attr::Subgraph, forked_graph);
fork_node->eraseBlock(0);
return std::make_shared<SimpleValue>(node_output);
}
Value* emitSimpleExpr(
const TreeRef& tree,
TypePtr type_hint = nullptr) {
switch (tree->kind()) {
case '@':
case TK_POW:
case TK_IS:
case TK_ISNOT:
case TK_NOT:
case TK_NE:
case TK_EQ:
case '<':
case '>':
case TK_LE:
case TK_GE:
case '*':
case '/':
case '+':
case '-':
case '%':
case '&':
case '|':
case '^':
case TK_FLOOR_DIV: {
const auto& inputs = tree->trees();
auto kind = getNodeKind(tree->kind(), inputs.size());
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
return emitBuiltinCall(
tree->range(),
*method.graph(),
kind,
c10::nullopt,
named_values,
{},
/*required=*/true);
}
case TK_UNARY_MINUS: {
return emitNegate(tree);
}
case TK_AND:
case TK_OR: {
const auto& inputs = tree->trees();
return emitShortCircuitIf(
tree->range(),
inputs[0],
inputs[1],
tree->kind() == TK_OR);
}
case TK_STARRED: {
throw ErrorReport(tree) << "Unexpected starred expansion. File a bug report.";
}
case TK_CONST: {
return emitConst(Const(tree));
} break;
case TK_TRUE: {
return graph->insertConstant(true, tree->range());
} break;
case TK_FALSE: {
return graph->insertConstant(false, tree->range());
} break;
case TK_NONE: {
return graph->insertConstant(IValue(), tree->range());
} break;
case TK_SUBSCRIPT: {
return emitSubscript(Subscript(tree));
} break;
case TK_IF_EXPR: {
return emitTernaryIf(TernaryIf(tree));
} break;
case TK_STRINGLITERAL: {
return emitStringLiteral(StringLiteral(tree));
} break;
case TK_LIST_LITERAL: {
auto ll = ListLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
// determine the element type of the list
// if we have a type hint of List[T], use T
// if the list is non-empty use type_of(list[0])
// otherwise assume it is List[Tensor]
TypePtr elem_type = DynamicType::get();
if (type_hint && type_hint->kind() == TypeKind::ListType) {
elem_type = type_hint->expect<ListType>()->getElementType();
} else if (!values.empty()) {
elem_type = values.at(0)->type();
}
for (auto v : values) {
if (v->type() != elem_type) {
throw ErrorReport(tree)
<< "Lists must contain only a single type, expected: "
<< *elem_type << " but found " << *v->type() << " instead";
}
}
Value* result = graph->insertNode(graph->createList(elem_type, values))
->output();
return result;
} break;
case TK_TUPLE_LITERAL: {
auto ll = TupleLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
return graph->insertNode(graph->createTuple(values))->output();
} break;
default:
throw ErrorReport(tree) << "NYI: " << tree;
break;
}
}
Value* emitConst(const Const& c) {
if (c.isFloatingPoint())
return materializeConstant(c.asFloatingPoint(), *graph, c.range(), fp_constants);
else
return materializeConstant(c.asIntegral(), *graph, c.range(), integral_constants);
}
Value* emitStringLiteral(const StringLiteral& c) {
return insertConstant(*graph, c.text(), c.range());
}
// Desugars select indexing: tensor[i] -> tensor.select(dim, i)
Value* emitSelect(
const SourceRange& loc,
Value* input,
int64_t dim,
Value* index) {
return emitBuiltinCall(
loc, *graph, aten::select, c10::nullopt,
{input, graph->insertConstant(dim, loc), index}, {}, true);
}
// Desugars slice indexing: tensor[begin:end] -> tensor.slice(dim, begin, end, 1)
Value* emitSlice(
const SourceRange& loc,
Value* input,
c10::optional<int64_t> dim, // Only used for tensor slicing
const SliceExpr& slice) {
std::vector<NamedValue> args;
args.reserve(4);
args.emplace_back(loc, "self", input);
// XXX: If list slicing becomes more complicated or stops using
// aten::slice, we should separate it from this function.
if (dim) {
JIT_ASSERT(input->type()->isSubtypeOf(DynamicType::get()));
args.emplace_back(loc, "dim", graph->insertConstant(dim.value(), loc));
} else {
JIT_ASSERT(!input->type()->isSubtypeOf(DynamicType::get()));
}
args.emplace_back(loc, "begin", emitExpr(Expr(slice.startOr(0))));
const auto has_end = slice.end().present();
if (has_end) {
args.emplace_back(loc, "end", emitExpr(Expr(slice.end().get())));
}
if (input->type()->cast<TupleType>()) {
if (has_end) {
return emitTupleSlice(loc, args[0], args[1], /*end*/args[2]);
} else {
return emitTupleSlice(loc, args[0], args[1], c10::nullopt);
}
}
NamedValue step = NamedValue(loc, "step", graph->insertConstant(1, loc));
return emitBuiltinCall(loc, *graph, aten::slice, c10::nullopt, args, {step}, true);
}
Value* emitIndex(
const SourceRange& loc,
Value* input,
at::ArrayRef<Value*> indices) {
auto* index = graph->insertNode(
graph->createList(DynamicType::get(), indices))->output();
return emitBuiltinCall(loc, *graph, aten::index, c10::nullopt, {input, index}, {}, true);
}
// Emits multidimensional slicing with int and slice indices.
// Returns:
// - Value*: the input after it has been indexed by int and slice indices.
// - vector<Value*>: A list of tensor Value* indices that have not been applied yet.
// Should be NULL at indices where sliceable (post-slicing) isn't indexed by a tensor.
std::pair<Value*, std::vector<Value*>> emitIntAndSliceIndexing(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
std::vector<Value*> tensor_indices;
size_t dim = 0;
auto handle_tensor = [&](Value* tensor) {
// NB: tensor_indices can have NULL holes because of how at::index works.
tensor_indices.resize(dim + 1);
tensor_indices[dim] = tensor;
dim++;
};
for (const auto & subscript_expr : subscript_exprs) {
if (subscript_expr.kind() == TK_SLICE_EXPR) {
sliceable = emitSlice(loc, sliceable, dim, SliceExpr(subscript_expr));
++dim;
continue;
}
auto index = emitExpr(subscript_expr);
if (index->type() == IntType::get()) {
sliceable = emitSelect(loc, sliceable, dim, index);
continue;
} else if (index->type()->isSubtypeOf(DynamicType::get())) {
handle_tensor(index);
continue;
}
throw ErrorReport(loc)
<< "Unsupported operation: indexing tensor with unsupported index type "
<< index->type()->str() << ". Only ints, slices, and tensors are supported.";
}
return std::make_pair(sliceable, tensor_indices);
}
// Desugars multidim slicing into slice/select/index calls.
//
// XXX: Errors in user code are not elegantly reported.
// Let's say someone were to do the following:
// @torch.jit.script
// def fn(x):
// return x[0, 1]
// fn(torch.randn(5))
// Because we desugar this into two aten::select ops, the error message
// complains about aten::select failing rather than there "not being
// enough dimensions to index".
//
// The strategy is to slice and select the tensor for int and slices first
// in one pass and then apply at::index on the result of the slicing/selecting.
// Call the tensor after we've applied slice / select the `sliced`.
// tensor_indices should have the same size as sliced.dim():
// - tensor_indices[i] = NULL if we should not index `sliced` at dim i
// - tensor_indices[i] = t if we should index `sliced` at dim i with tensor t.
Value* emitMultidimSlicing(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
if (!sliceable->type()->isSubtypeOf(DynamicType::get())) {
throw ErrorReport(loc)
<< "Unsupported operation: attempted to use multidimensional "
<< "indexing on a non-tensor type.";
}
std::vector<Value*> tensor_indices;
std::tie(sliceable, tensor_indices) =
emitIntAndSliceIndexing(loc, sliceable, subscript_exprs);
if (tensor_indices.empty()) {
// XXX: Might need to at::alias this when we support mutability
return sliceable;
}
// at::index takes in a TensorList where some tensors can be undefined.
// Convert NULL tensor_indices to undefined tensors to pass to at::index.
for (auto& index : tensor_indices) {
if (index == nullptr) {
index = graph->insertNode(graph->createUndefined())->output();
}
}
return emitIndex(loc, sliceable, tensor_indices);
}
// Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin,
// end).
Value* emitBasicSlice(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
JIT_ASSERT(subscript_exprs.size() == 1);
JIT_ASSERT(subscript_exprs[0].kind() == TK_SLICE_EXPR);
auto slice_exp = SliceExpr(subscript_exprs[0]);
c10::optional<int64_t> maybe_dim;
if (sliceable->type()->isSubtypeOf(DynamicType::get())) {
// If the sliceable object is a tensor, specify a default dimension
maybe_dim = 0;
}
return emitSlice(loc, sliceable, maybe_dim, slice_exp);
}
int64_t getTupleIndexVal(const SourceRange& loc,
const TupleTypePtr& tuple_type,
Value * idx_val,
bool allow_out_of_bounds) {
int64_t index;
at::optional<IValue> ivalue = toIValue(idx_val);
if (ivalue && ivalue->isInt()) {
index = ivalue->to<int64_t>();
} else {
throw ErrorReport(loc)
<< "tuple indices must be integer constants";
}
// set index to be positive to simplify logic in runtime
int64_t adj_index = index;
int64_t tuple_len = tuple_type->elements().size();
if (index < 0) {
adj_index = tuple_len + index;
}
if (!allow_out_of_bounds && (adj_index >= tuple_len || adj_index < 0)) {
throw ErrorReport(loc)
<< "Tuple index out of range. Tuple is length " << tuple_len
<< " and index is " << index;
}
return adj_index;
}
Value* emitTupleIndex(const SourceRange& loc,
Value * tuple_val,
Value * idx_val) {
auto tuple_typ = tuple_val->type()->cast<TupleType>();
auto adj_index = getTupleIndexVal(loc, tuple_typ, idx_val, /*allow_out_of_bounds*/false);
return graph->insertNode(
graph->createTupleIndex(tuple_val, adj_index))->output();
}
Value* emitTupleSlice(const SourceRange& loc,
const NamedValue& tuple_val,
const NamedValue& beg_val,
const at::optional<NamedValue>& end_val) {
auto tuple_type = tuple_val.value(*graph)->type()->expect<TupleType>();
int64_t beg = getTupleIndexVal(loc, tuple_type, beg_val.value(*graph), /*allow_out_of_bounds*/true);
int64_t end;
int64_t tuple_len = tuple_type->elements().size();
if (end_val) {
end = getTupleIndexVal(loc, tuple_type, end_val->value(*graph), true);
} else {
end = tuple_len;
}
// slicing does not throw out of bounds errors
end = std::min(std::max((int64_t)0, end), tuple_len);
beg = std::min(std::max((int64_t)0, beg), tuple_len);
return graph->insertNode(
graph->createTupleSlice(tuple_val.value(*graph), beg, end))->output();
}
Value* emitSubscript(const Subscript& subscript) {
return emitSubscript(
subscript.range(),
emitExpr(subscript.value()),
subscript.subscript_exprs());
}
Value* emitSubscript(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
if (subscript_exprs.size() != 1) {
return emitMultidimSlicing(loc, sliceable, subscript_exprs);
}
if (subscript_exprs[0].kind() == TK_SLICE_EXPR) {
return emitBasicSlice(loc, sliceable, subscript_exprs);
} else {
return emitBasicGather(loc, sliceable, subscript_exprs);
}
}
// Desugars gather syntactic sugar foo[i]
Value* emitBasicGather(
const SourceRange& loc,
Value* gatherable,
const List<Expr>& subscript_exprs) {
JIT_ASSERT(subscript_exprs.size() == 1);
if (gatherable->type()->kind() == TypeKind::ListType) {
// if it's a list, emit a regular index selection op
auto* idx = emitExpr(subscript_exprs[0]);
return emitBuiltinCall(
loc, *graph, aten::select, c10::nullopt, {gatherable, idx}, {}, true);
} else if (gatherable->type()->isSubtypeOf(DynamicType::get())) {
return emitMultidimSlicing(loc, gatherable, subscript_exprs);
} else if (auto tuple_type = gatherable->type()->cast<TupleType>()) {
auto* idx = emitExpr(subscript_exprs[0]);
return emitTupleIndex(loc, gatherable, idx);
} else {
throw ErrorReport(loc)
<< "Indexing only supported on lists, tensors, and tuples.";
}
}
};
static const std::unordered_map<std::string, std::string> &builtin_cast_methods() {
static std::unordered_map<std::string, std::string> builtin_cast_methods = {
{"byte", "_cast_Byte"},
{"char", "_cast_Char"},
{"double", "_cast_Double"},
{"float", "_cast_Float"},
{"int", "_cast_Int"},
{"long", "_cast_Long"},
{"short", "_cast_Short"},
{"half", "_cast_Half"}
};
return builtin_cast_methods;
}
// support syntax sugar for x.foo(y, z) by allowing x.foo to return a
// callable value that will resolve to foo(x, y, z) when called.
std::shared_ptr<SugaredValue> SimpleValue::attr(SourceRange loc, Method & m, const std::string& field) {
// Allow method-style casts on Tensor types. e.g. x.int()
if (value->type()->isSubtypeOf(DynamicType::get())) {
if (builtin_cast_methods().count(field)) {
return std::make_shared<BuiltinFunction>(
Symbol::aten(builtin_cast_methods().at(field)),
NamedValue(loc, "self", value));
}
// functions that are just direct property lookups on tensor
// must be registered as prim::<name>(Tensor t) -> <return_type>
static const std::unordered_set<std::string> fields = {
"dtype",
"device",
"shape",
};
if (fields.count(field)) {
auto r = m.graph()->insert(Symbol::fromQualString("prim::"+field), {value});
return std::make_shared<SimpleValue>(r);
}
}
if (getValue()->type()->isSubtypeOf(NumberType::get())) {
throw ErrorReport(loc) << "Cannot call methods on numbers";
}
return std::make_shared<BuiltinFunction>(
Symbol::aten(field), NamedValue(loc, "self", value));
}
std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs) {
std::unordered_map<Value*, Value*> value_map;
auto value_map_func = [&](Value* v) { return value_map.at(v); };
JIT_ASSERT(callee.inputs().size() == inputs.size());
for (size_t i = 0; i < inputs.size(); ++i) {
value_map[callee.inputs()[i]] = inputs[i];
}
for (auto* node : callee.nodes()) {
auto* new_node =
g.insertNode(g.createClone(node, value_map_func));
for (size_t i = 0; i < node->outputs().size(); ++i) {
value_map[node->outputs()[i]] = new_node->outputs()[i];
}
}
std::vector<Value*> outputs;
for (auto* output : callee.outputs()) {
outputs.push_back(value_map_func(output));
}
return outputs;
}
void defineMethodsInModule(std::shared_ptr<Module> m, const std::vector<Def>& definitions, const std::vector<Resolver>& resolvers, SugaredValuePtr self) {
JIT_ASSERT(definitions.size() == resolvers.size());
auto resolver_it = resolvers.begin();
std::vector<Method*> methods;
std::unordered_map<std::string, Method*> function_table;
for(Def def : definitions) {
const std::string& name = def.name().name();
auto resolver = *resolver_it++;
JIT_ASSERT(resolver);
if(!self) {
// if self is defined, then these are methods and do not go into the global namespace
// otherwise, they get defined together so we add them to the function table
// so the methods can see each other
resolver = [resolver, &function_table](
const std::string& name,
Method& m,
const SourceRange& loc) -> std::shared_ptr<SugaredValue> {
auto it = function_table.find(name);
if (it != function_table.end()) {
return std::make_shared<MethodValue>(nullptr, *it->second);
}
return resolver(name, m, loc);
};
}
auto creator = [def, resolver, self](Method& method) {
JIT_ASSERT(resolver);
to_ir(def, resolver, self, method);
};
Method& method = m->create_method(name, creator);
function_table[name] = &method;
methods.push_back(&method);
}
for(Method* method : methods) {
method->ensure_defined();
}
didFinishEmitModule(m);
}
const std::unordered_map<std::string, TypePtr> &ident_to_type_lut() {
static std::unordered_map<std::string, TypePtr> map = {
{"Tensor", DynamicType::get()},
{"int", IntType::get()},
{"float", FloatType::get()},
{"bool", BoolType::get()},
{"str", StringType::get()},
// technically this is not a python type but we need it when
// parsing serialized methods that use implicit converions to Scalar
{"number", NumberType::get()},
};
return map;
}
const std::unordered_map<std::string, std::function<TypePtr(Subscript)>> &subscript_to_type_fns() {
static std::unordered_map<std::string, std::function<TypePtr(Subscript)>> map = {
{"Tuple", [](Subscript subscript) -> TypePtr {
std::vector<TypePtr> subscript_expr_types;
for (auto expr : subscript.subscript_exprs()) {
subscript_expr_types.push_back(parseTypeFromExpr(expr));
}
return TupleType::create(subscript_expr_types);
}},
{"List", [](Subscript subscript) -> TypePtr {
if (subscript.subscript_exprs().size() != 1) {
throw ErrorReport(subscript) << " expected exactly one element type but found " << subscript.subscript_exprs().size();
}
auto elem_type = parseTypeFromExpr(*subscript.subscript_exprs().begin());
return ListType::create(elem_type);
}},
{"Optional", [](Subscript subscript) -> TypePtr {
if (subscript.subscript_exprs().size() != 1) {
throw ErrorReport(subscript) << " expected exactly one element type but found " << subscript.subscript_exprs().size();
}
auto elem_type = parseTypeFromExpr(*subscript.subscript_exprs().begin());
return OptionalType::create(elem_type);
}},
};
return map;
}
bool isTorch(Expr expr) {
return expr.kind() == TK_VAR && Var(expr).name().name() == "torch";
}
// gets the base type name given namespaces where the types live
// turns torch.Tensor -> Tensor, X -> X
c10::optional<std::string> parseBaseTypeName(Expr expr) {
switch (expr.kind()) {
case TK_VAR: {
return Var(expr).name().name();
}
case '.': {
auto select = Select(expr);
const std::string& name = select.selector().name();
if (isTorch(select.value()) && name == "Tensor")
return "Tensor";
}
}
return at::nullopt;
}
TypePtr parseTypeFromExpr(Expr expr) {
if (expr.kind() == TK_SUBSCRIPT) {
auto subscript = Subscript(expr);
auto value_name = parseBaseTypeName(subscript.value());
if (!value_name) {
throw ErrorReport(subscript.value().range()) << "Subscripted type must be a type identifier";
}
if (!subscript_to_type_fns().count(*value_name)) {
throw ErrorReport(subscript.range()) << "Unknown type constructor " << *value_name;
}
return subscript_to_type_fns().at(*value_name)(subscript);
} else if (auto name = parseBaseTypeName(expr)) {
auto itr = ident_to_type_lut().find(*name);
if (itr != ident_to_type_lut().end()) {
return itr->second;
}
throw ErrorReport(expr) << "Unknown type name " << *name;
}
throw ErrorReport(expr.range()) << "Expression of type " << kindToString(expr.kind())
<< " cannot be used in a type expression";
}
c10::optional<std::pair<TypePtr, int32_t>> handleBroadcastList(Expr expr) {
if (expr.kind() != TK_SUBSCRIPT)
return c10::nullopt;
auto subscript = Subscript(expr);
if (subscript.value().kind() != TK_VAR)
return c10::nullopt;
auto var = Var(subscript.value());
if (var.name().name().find("BroadcastingList") != 0) {
return c10::nullopt;
}
if (subscript.subscript_exprs().size() != 1)
throw ErrorReport(subscript.subscript_exprs().range())
<< "BroadcastingList must be subscripted with a type";
auto typ = subscript.subscript_exprs()[0];
auto len = var.name().name().substr(strlen("BroadcastingList"));
if (typ.kind() != TK_VAR)
throw ErrorReport(subscript.value().range()) << "Subscripted type must be a type identifier";
auto value_name = Var(typ).name().name();
if (value_name != "float" && value_name != "int")
throw ErrorReport(subscript.value().range()) << "Broadcastable lists only supported for int or float";
auto elem_ptr = ident_to_type_lut().find(value_name);
JIT_ASSERT(elem_ptr != ident_to_type_lut().end());
TypePtr list_ptr = ListType::create(elem_ptr->second);
Parser const_parser(len);
auto constant = const_parser.parseConst();
if (!constant.isIntegral() || constant.asIntegral() <= 0) {
throw ErrorReport(subscript.subscript_exprs().range())
<< "subscript of Broadcastable list must be positive integer";
}
auto len_v = constant.asIntegral();
return std::pair<TypePtr, int32_t>(list_ptr, len_v);
}
std::vector<Argument> parseArgsFromDecl(Decl decl, bool is_method) {
std::vector<Argument> retval;
size_t i = is_method ? 1 : 0;
for (; i < decl.params().size(); ++i) {
auto decl_arg = decl.params()[i];
TypePtr type;
c10::optional<int32_t> N;
//BroadcastList list can only appear at the argument level
if (auto maybe_broad_list = handleBroadcastList(decl_arg.type())) {
type = maybe_broad_list->first;
N = maybe_broad_list->second;
} else {
type = parseTypeFromExpr(decl_arg.type());
N = c10::nullopt;
}
auto arg = Argument(
decl_arg.ident().name(),
type,
N,
/*default_value =*/c10::nullopt,
/*kwarg_only =*/false);
retval.push_back(arg);
}
return retval;
}
std::vector<Argument> parseReturnsFromDecl(Decl decl) {
JIT_ASSERT(decl.return_type().present());
if (handleBroadcastList(decl.return_type().get()))
throw ErrorReport(decl.return_type().range()) << "Broadcastable lists cannot appear as a return type";
auto parsed_type = parseTypeFromExpr(decl.return_type().get());
if (auto tuple_type = parsed_type->cast<TupleType>()) {
// Flatten a single return type of type Tuple into its constituent types
std::vector<Argument> retval;
for (auto type_ptr : tuple_type->elements()) {
retval.emplace_back(
"",
type_ptr,
/*N =*/c10::nullopt,
/*default_value =*/c10::nullopt,
/*kwarg_only =*/false);
}
return retval;
} else {
return {Argument(
"",
parsed_type,
/*N =*/c10::nullopt,
/*default_value =*/c10::nullopt,
/*kwarg_only =*/false)};
}
}
FunctionSchema extractSchemaFromDef(const Def &def, bool is_method) {
auto name = def.name().name();
std::vector<Argument> args = parseArgsFromDecl(def.decl(), is_method);
std::vector<Argument> returns;
bool is_varret;
if (def.decl().return_type().present()) {
returns = parseReturnsFromDecl(def.decl());
is_varret = false;
} else {
is_varret = true;
}
return FunctionSchema(name, args, returns, false, is_varret);
}
void defineMethodsInModule(std::shared_ptr<Module> m, const std::string& source, Resolver resolver, SugaredValuePtr self) {
Parser p(source);
std::vector<Def> definitions;
std::vector<Resolver> resolvers;
while (p.lexer().cur().kind != TK_EOF) {
auto def = Def(p.parseFunction(/*is_method=*/bool(self)));
definitions.push_back(def);
resolvers.push_back(resolver);
}
defineMethodsInModule(m, definitions, resolvers, self);
}
std::vector<std::shared_ptr<SugaredValue>> SimpleValue::asTuple(
SourceRange loc,
Method& m,
c10::optional<size_t> size_hint) {
static const auto make_simple_value = [](Value* v) -> std::shared_ptr<SugaredValue> {
return std::make_shared<SimpleValue>(v);
};
if(value->type()->kind() == TypeKind::TupleType) {
auto outputs = createTupleUnpack(value);
return fmap(outputs, make_simple_value);
} else if (value->type()->kind() == TypeKind::ListType) {
if (!size_hint) {
throw ErrorReport(loc) << "cannot statically infer the expected size of a list in this context";
}
auto graph = value->owningGraph();
Node *unpack = graph->insertNode(graph->createListUnpack(value, *size_hint));
return fmap(unpack->outputs(), make_simple_value);
}
throw ErrorReport(loc) << value->type()->str() << " cannot be used as a tuple";
}
} // namespace script
} // namespace jit
} // namespace torch