pytorch/torch/csrc/autograd/functions/utils.cpp
Sam Gross d605058212
Replace Variable.volatile with torch.no_grad() (#3970)
This removes volatile from Variable. The functionality is mostly
replaced by a global (thread-local) flag, which is controlled by
torch.set_grad_enabled() and the context manager torch.no_grad().

In C++, the flag is exposed through GradMode::is_enabled() and GradMode::set_enabled()

Fixes #3627
2017-12-18 15:46:13 -05:00

58 lines
1.5 KiB
C++

#include "torch/csrc/autograd/functions/utils.h"
#include "torch/csrc/utils/functional.h"
#include "torch/csrc/jit/tracer.h"
#include "torch/csrc/autograd/variable.h"
#include <sstream>
namespace torch { namespace autograd {
variable_list wrap_outputs(const variable_list& inputs, tensor_list&& outputs,
function_constructor ctr) {
auto flags = Function::flags(inputs);
variable_list result;
result.reserve(outputs.size());
if (!flags.is_executable) {
for (auto& output : outputs) {
if (output.defined()) {
result.emplace_back(make_variable(output, false));
} else {
result.emplace_back();
}
}
} else {
auto grad_fn = ctr(std::move(flags));
for (auto& output : outputs) {
if (output.defined()) {
result.emplace_back(make_variable(output, grad_fn));
} else {
++grad_fn->num_inputs;
result.emplace_back();
}
}
}
return result;
}
void check_input_variables(const char* name, const variable_list& inputs, int args, int required_args) {
if (required_args == -1) {
required_args = args;
}
if (inputs.size() != (size_t)args) {
std::stringstream ss;
ss << name << ": expected " << args << " arguments (got " << inputs.size();
ss << ")";
throw std::runtime_error(ss.str());
}
for (int i = 0; i < required_args; ++i) {
if (!inputs[i].defined()) {
std::stringstream ss;
ss << name << ": expected Variable at argument " << i << " (got None)";
throw std::runtime_error(ss.str());
}
}
}
}}