pytorch/torch/csrc/jit/runtime/static/ops.cpp
Mike Iovine d5f64afc38 [Static Runtime] Support aten::to.prim_dtype overload (#64928)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64928

Added support this overload of `aten::to`:
```
aten::to.prim_dtype(Tensor(a) self, int? dtype, bool non_blocking=False, bool copy=False) -> Tensor(a|b)
```

Test Plan: `buck test caffe2/benchmarks/static_runtime:static_runtime_cpptest -- IndividualOps_to`

Reviewed By: hlu1

Differential Revision: D30901398

fbshipit-source-id: 38ce807c30185e92dd472b404b362f22ac7e4efb
2021-10-07 10:22:44 -07:00

2051 lines
71 KiB
C++

#include <torch/csrc/jit/runtime/static/ops.h>
#include <ATen/CPUFunctions.h>
#include <ATen/InferSize.h>
#include <ATen/NativeFunctions.h>
#include <ATen/ScalarOps.h>
#include <ATen/TensorUtils.h>
#include <ATen/native/EmbeddingBag.h>
#include <ATen/native/Fill.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/native/Resize.h>
#include <ATen/native/SharedReduceOps.h>
#include <ATen/native/TensorAdvancedIndexing.h>
#include <ATen/native/layer_norm.h>
#include <ATen/native/quantized/cpu/fbgemm_utils.h>
#include <ATen/native/quantized/cpu/qembeddingbag.h>
#include <ATen/native/quantized/cpu/qembeddingbag_prepack.h>
#include <c10/core/ScalarType.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/csrc/jit/runtime/static/te_wrapper.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <mutex>
#include <unordered_map>
C10_DEFINE_bool(
static_runtime_enable_fast_math,
true,
"If on, static runtime may use use optimizations that cause accurary loss "
"vs the jit interpreter");
namespace at {
namespace native {
void repeat_out(at::Tensor& result, const Tensor& self, IntArrayRef repeats) {
TORCH_CHECK(
repeats.size() >= static_cast<size_t>(self.dim()),
"Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor");
// Add new leading dimensions to the tensor if the
// number of target dimensions is larger than the
// number of source dimensions.
int64_t num_new_dimensions = repeats.size() - self.dim();
DimVector padded_size(num_new_dimensions, 1);
padded_size.insert(
padded_size.end(), self.sizes().begin(), self.sizes().end());
DimVector target_size(repeats.size());
bool zero_tensor = false;
for (const auto idx : c10::irange(repeats.size())) {
if (repeats[idx] == 0) {
zero_tensor = true;
}
target_size[idx] = padded_size[idx] * repeats[idx];
}
// return an empty tensor if one of the repeat dimensions is zero
at::native::resize_(result, target_size, c10::nullopt);
if (zero_tensor) {
return;
}
Tensor xtensor = at::native::expand(self, padded_size);
Tensor urtensor = at::native::alias(result);
for (const auto i : c10::irange(xtensor.dim())) {
// can't unfold with step 0, so make sure step is at least 1
// (it doesn't matter what it is in that case, because the size is 0).
urtensor = urtensor.unfold(
i, xtensor.size(i), std::max<int64_t>(xtensor.size(i), 1));
}
at::native::copy_(urtensor, xtensor.expand_as(urtensor));
}
// copy version of view ops
at::Tensor& reshape_copy_out(
at::Tensor& out,
const at::Tensor& self,
const std::vector<int64_t>& proposed_shape,
bool infer_size) {
auto shape = infer_size ? at::infer_size(proposed_shape, self.numel())
: proposed_shape;
at::native::resize_(out, shape, c10::nullopt);
auto self_contig = self.expect_contiguous();
size_t nbytes = self.nbytes();
if (nbytes == 0) {
return out;
}
const void* self_data = self_contig->data_ptr();
void* out_data = out.data_ptr();
memcpy(out_data, self_data, nbytes);
return out;
}
at::Tensor& flatten_copy_out(
at::Tensor& out,
const at::Tensor& self,
int64_t start_dim,
int64_t end_dim) {
start_dim =
start_dim < 0 ? c10::maybe_wrap_dim(start_dim, self.dim()) : start_dim;
end_dim = end_dim < 0 ? c10::maybe_wrap_dim(end_dim, self.dim()) : end_dim;
TORCH_CHECK(
start_dim <= end_dim,
"flatten() has invalid args: start_dim cannot come after end_dim");
if (self.dim() == 0) {
return reshape_copy_out(out, self, {1}, false);
}
if (start_dim == end_dim) {
auto shape = self.sizes().vec();
return reshape_copy_out(out, self, shape, false);
}
// We don't want to infer_size on the entire shape, because that can give us
// an extra degree of freedom we don't want; for example, consider shape [0,
// 1, 3, 0], with start_dim=1, end_dim=2. It's clear we want result shape [0,
// 3, 0] but passing [0, -1, 0] to infer_size means the -1 can take on any
// value and satisfy the constraints.
auto iter = self.sizes().data();
auto slice_numel = std::accumulate(
iter + start_dim,
iter + end_dim + 1,
static_cast<int64_t>(1),
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<int64_t>());
std::vector<int64_t> shape;
shape.reserve(self.dim() - end_dim + start_dim);
for (const auto i : c10::irange(start_dim)) {
shape.push_back(self.sizes()[i]);
}
shape.push_back(slice_numel);
for (int64_t i = end_dim + 1; i < self.dim(); i++) {
shape.push_back(self.sizes()[i]);
}
return reshape_copy_out(out, self, shape, false);
}
namespace {
// This is annoying and sily, but it's solving a real problem: the
// _MSC_VER version causes an ICE on our old clang5 builds. The
// non-_MSC_VER version is a syntax error according to MSVC. Use the
// appropriate version depending on if we're MSVC or not.
#define TO_COPY_OUT_FAST_PATH_LOGIC(out, self, self_t) \
do { \
const auto N = self.numel(); \
const auto self_data = self.data_ptr<self_t>(); \
AT_DISPATCH_ALL_TYPES_AND2( \
kHalf, kBFloat16, out.scalar_type(), "to_copy_out_inner_loop", [&]() { \
const auto out_data = out.data_ptr<scalar_t>(); \
for (const auto idx : c10::irange(N)) { \
/* NOLINTNEXTLINE(bugprone-signed-char-misuse) */ \
out_data[idx] = static_cast<scalar_t>(self_data[idx]); \
} \
}); \
} while (0)
#ifdef _MSC_VER
template <typename T>
void to_copy_out_fast_path(Tensor& out, const Tensor& self) {
TO_COPY_OUT_FAST_PATH_LOGIC(out, self, T);
}
#define TO_COPY_OUT_FAST_PATH_BODY(out, self) \
to_copy_out_fast_path<scalar_t>(out, self)
#else
#define TO_COPY_OUT_FAST_PATH_BODY(out, self) \
using self_t = scalar_t; \
TO_COPY_OUT_FAST_PATH_LOGIC(out, self, self_t)
#endif
} // namespace
at::Tensor& to_copy_out(
Tensor& out,
const Tensor& self,
bool non_blocking,
bool copy_strides,
c10::optional<MemoryFormat> memory_format) {
if (copy_strides) {
at::native::resize_impl_cpu_(
out.unsafeGetTensorImpl(), self.sizes(), self.strides());
} else {
at::native::resize_(out, self.sizes(), c10::nullopt);
}
// Fast path: can we just copy the data ourselves? Avoids creating a
// TensorIterator in at::native::copy_, which is relatively
// expensive.
if (self.is_contiguous() && !non_blocking &&
// Did the user request us to make a copy that isn't contiguous?
(memory_format == c10::nullopt ||
memory_format == c10::MemoryFormat::Preserve ||
memory_format == c10::MemoryFormat::Contiguous) &&
// CopyKernel.cpp handles this case specially, so let's not mess
// with it.
!self.is_neg() &&
!(
// FBGEMM optimization might kick in, don't interfere with
// that.
(self.dtype() == kFloat && out.dtype() == kHalf) ||
(self.dtype() == kHalf && out.dtype() == kFloat))) {
AT_DISPATCH_ALL_TYPES_AND2(
kHalf, kBFloat16, self.scalar_type(), "to_copy_out", [&]() {
TO_COPY_OUT_FAST_PATH_BODY(out, self);
});
return out;
}
at::native::copy_(out, self, non_blocking);
return out;
}
Tensor& linear_out(
Tensor& output,
const Tensor& input,
const Tensor& weight,
const c10::optional<Tensor>& bias_opt) {
TORCH_CHECK(!input.is_mkldnn());
auto bias = bias_opt.has_value()
? c10::MaybeOwned<Tensor>::borrowed(*bias_opt)
: c10::MaybeOwned<Tensor>::owned(c10::in_place);
if (input.dim() == 2 && bias->defined()) {
// Fused op is marginally faster.
return at::cpu::addmm_out(output, *bias, input, weight.t());
}
at::native::matmul_out(input, weight.t(), output);
if (bias->defined()) {
at::cpu::add_(output, *bias);
}
return output;
}
Tensor& c2_argmin_out(
Tensor& output,
const Tensor& input,
const int64_t dim,
const bool keepdim) {
const auto ndim = input.dim();
int64_t dim_ = maybe_wrap_dim(dim, ndim);
TORCH_CHECK(dim_ >= 0 && dim_ < ndim);
const auto in_dims = input.sizes();
c10::SmallVector<int64_t, 5> out_dims;
out_dims.reserve(ndim);
int prev_size = 1;
int next_size = 1;
for (int i = 0; i < dim_; ++i) {
out_dims.push_back(in_dims[i]);
prev_size *= in_dims[i];
}
if (keepdim) {
out_dims.push_back(1);
}
for (auto i = dim_ + 1; i < ndim; ++i) {
out_dims.push_back(in_dims[i]);
next_size *= in_dims[i];
}
at::native::resize_(output, out_dims, c10::nullopt);
const auto n = in_dims[dim_];
if (next_size == 1) {
AT_DISPATCH_ALL_TYPES_AND2(
kHalf, kBFloat16, input.scalar_type(), "argmin_input", [&]() {
const auto in_ptr = input.data_ptr<scalar_t>();
const auto out_ptr = output.data_ptr<int64_t>();
// input is a [prev_size, n] tensor.
// output is a [prev_size,] tensor.
// Thus, access is contiguous/coalesced.
for (int i = 0; i < prev_size; ++i) {
auto v = std::min_element(
in_ptr + i * n,
in_ptr + (i + 1) * n,
[](scalar_t a, scalar_t b) {
// if a is nan, then a is *less* than b with LessOrNan
// semantics
if (at::_isnan(a)) {
return true;
}
// if a is not nan and b is nan, then a is not less than b
// with LessOrNan semantics otherwise, act normally. If `b` is
// NaN then a < b will always return false, so this is
// equivalent to the first snippet.
return a < b;
});
out_ptr[i] = std::distance(in_ptr + i * n, v);
}
});
} else {
AT_DISPATCH_ALL_TYPES_AND2(
kHalf, kBFloat16, input.scalar_type(), "argmin_input", [&]() {
const auto less_or_nan = native::detail::LessOrNan<scalar_t>{};
const auto in_ptr = input.data_ptr<scalar_t>();
const auto out_ptr = output.data_ptr<int64_t>();
std::memset(out_ptr, 0, prev_size * next_size * sizeof(int64_t));
for (int i = 0; i < prev_size; ++i) {
const scalar_t* cur_in_ptr = in_ptr + i * n * next_size + next_size;
for (int k = 1; k < n; ++k) {
for (int j = 0; j < next_size; ++j) {
int64_t* cur_out_ptr = out_ptr + i * next_size + j;
if (less_or_nan(
*cur_in_ptr,
in_ptr
[i * n * next_size + *cur_out_ptr * next_size + j],
*cur_out_ptr,
k)) {
*cur_out_ptr = k;
}
++cur_in_ptr;
}
}
}
});
}
return output;
}
} // namespace native
} // namespace at
namespace torch {
namespace jit {
C10_DEFINE_REGISTRY(SROperatorRegistry, SROperatorFunctor);
bool opIsRegistered(const c10::Symbol& op_name) {
const std::string name(op_name.toQualString());
return SROperatorRegistry()->Has(name);
}
bool disableUnsafeMathOp(const char* op_name) {
if (FLAGS_static_runtime_enable_fast_math) {
return false;
}
// This list contains ops that use caffe2 math library or use NNC that does
// not guarantee bit exactness vs the jit interpreter. Note aten::relu is not
// included even though it uses NNC because the results of relu should always
// match.
static const FastSet<std::string> fast_ops{
"aten::add", "aten::tanh", "aten::sigmoid", "aten::logit"};
return fast_ops.count(op_name) > 0;
}
std::function<void(ProcessedNode*)> getOutOfPlaceOperation(Node* n) {
auto op_name = n->kind().toQualString();
if (SROperatorRegistry()->Has(op_name) && !disableUnsafeMathOp(op_name)) {
return SROperatorRegistry()->Create(op_name)->Generate(n);
}
return nullptr;
}
// Returns true if the node represents an op with variadic arguments.
bool hasVarArgs(Node* n) {
if (n->kind() == prim::VarConcat || n->kind() == prim::VarStack) {
return true;
}
return false;
}
bool canReuseInputsOutputs(
Node* n,
const FastMap<Node*, bool>& node_has_out_variant) {
auto it = node_has_out_variant.find(n);
if (it != node_has_out_variant.end()) {
return it->second;
}
return getOutOfPlaceOperation(n) != nullptr;
}
// returns true if the producers of the inputs
// to this operations are out of place.
// This means the IValues will not change run to run
bool inputsCanRunOutOfPlace(
Node* n,
const FastMap<Node*, bool>& node_has_out_variant) {
for (auto* input : n->inputs()) {
if (!canReuseInputsOutputs(input->node(), node_has_out_variant)) {
return false;
}
}
return true;
}
bool isOptimizableContainerType(
Node* n,
const FastMap<Node*, bool>& node_has_out_variant) {
const auto& type = n->output()->type();
bool is_supported_type = false;
if (type->kind() == TypeKind::ListType) {
const auto& list_type = type->expectRef<ListType>();
is_supported_type =
list_type.getElementType()->kind() == TypeKind::TensorType;
} else if (type->kind() == TypeKind::TupleType) {
const auto& tuple_type = type->expectRef<TupleType>();
auto types = tuple_type.containedTypes();
const auto& iter =
std::find_if(types.begin(), types.end(), [](const TypePtr& elem) {
return elem->kind() == TypeKind::TensorType;
});
is_supported_type = iter != types.end();
}
return is_supported_type && inputsCanRunOutOfPlace(n, node_has_out_variant);
}
REGISTER_OPERATOR_FUNCTOR(
prim::ListConstruct,
prim_ListConstruct,
[](Node* n) -> SROperator {
const auto& type = n->output()->type()->expectRef<ListType>();
bool can_optimize = isOptimizableContainerType(n, FastMap<Node*, bool>());
return [can_optimize, &type](ProcessedNode* p_node) {
const auto& out_l = p_node->Output(0);
if (!out_l.isNone() && can_optimize) {
return;
}
const size_t size = p_node->inputs().size();
c10::List<IValue> vals(type.getElementType());
vals.reserve(size);
for (const auto i : c10::irange(size)) {
vals.push_back(p_node->Input(i));
}
p_node->Output(0) = std::move(vals);
};
});
REGISTER_OPERATOR_FUNCTOR(
prim::TupleConstruct,
prim_TupleConstruct,
[](Node* n) -> SROperator {
bool can_optimize = isOptimizableContainerType(n, FastMap<Node*, bool>());
return [can_optimize](ProcessedNode* p_node) {
const auto& out_l = p_node->Output(0);
if (!out_l.isNone() && can_optimize) {
return;
}
// prepare inputs
const size_t size = p_node->inputs().size();
std::vector<IValue> vals;
vals.reserve(size);
for (const auto i : c10::irange(size)) {
vals.push_back(p_node->Input(i));
}
p_node->Output(0) = c10::ivalue::Tuple::create(std::move(vals));
};
});
REGISTER_OPERATOR_FUNCTOR(aten::abs, aten_abs, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::abs(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::abs(in0_t);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::abs_out(in0_t, out_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::mul, aten_mul, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::mul.Tensor(Tensor self, Tensor other) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::mul(in0_t, in1_t);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::mul_out(out_t, in0_t, in1_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::addmm, aten_addmm, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
const auto& in2_t = p_node->Input(2).toTensor();
const auto in3_s = p_node->Input(3).toScalar();
const auto in4_s = p_node->Input(4).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::addmm(in0_t, in1_t, in2_t, in3_s, in4_s);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::addmm_out(out_t, in0_t, in1_t, in2_t, in3_s, in4_s);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::clamp, aten_clamp, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
auto in1_s = p_node->Input(1).toOptional<at::Scalar>();
auto in2_s = p_node->Input(2).toOptional<at::Scalar>();
at::cpu::clamp_out(out_t, in0_t, in1_s, in2_s);
};
}
if (n->matches(
"aten::clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> Tensor")) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
auto in1_t = p_node->Input(1).toOptional<at::Tensor>();
auto in2_t = p_node->Input(2).toOptional<at::Tensor>();
at::native::clamp_out(in0_t, in1_t, in2_t, out_t);
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::bmm, aten_bmm, [](Node* n) -> SROperator {
if (!n->matches(
torch::schema("aten::bmm(Tensor self, Tensor mat2) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::bmm_out(out_t, in0_t, in1_t);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::nan_to_num, aten_nan_to_num, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::nan_to_num(Tensor self, float? nan=None, float? posinf=None, float? neginf=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_d = p_node->Input(1).toOptional<double>();
const auto in2_d = p_node->Input(2).toOptional<double>();
const auto in3_d = p_node->Input(3).toOptional<double>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::nan_to_num(in0_t, in1_d, in2_d, in3_d);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::nan_to_num_out(in0_t, in1_d, in2_d, in3_d, out_t);
}
};
});
// Split out into a function to appease MSVC's pre-processor
SROperator aten_stack(Node* n) {
if (!n->matches(torch::schema(
"aten::stack(Tensor[] tensors, int dim=0) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto inputs = p_node->Input(0).toTensorVector();
const auto dim = p_node->Input(1).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::_stack_cpu(inputs, dim);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::_stack_out_cpu(inputs, dim, out_t);
}
};
}
REGISTER_OPERATOR_FUNCTOR(aten::stack, aten_stack, aten_stack);
REGISTER_OPERATOR_FUNCTOR(
prim::VarStack,
prim_VarStack,
[](Node* n) -> SROperator {
return [](ProcessedNode* p_node) {
const size_t num_inputs = p_node->inputs().size();
std::vector<at::Tensor> inputs(num_inputs - 1);
for (size_t i = 0; i < num_inputs - 1; ++i) {
inputs[i] = p_node->Input(i).toTensor();
}
const auto dim = p_node->Input(num_inputs - 1).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::_stack_cpu(inputs, dim);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::_stack_out_cpu(inputs, dim, out_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::leaky_relu, aten_leaky_relu, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_s = p_node->Input(1).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::leaky_relu(in0_t, in1_s);
} else {
auto& out_t = p_node->Output(0).toTensor();
at::cpu::leaky_relu_out(out_t, in0_t, in1_s);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::relu, aten_relu, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::relu(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createRelu();
return [te](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te->supports(in0_t)) {
fastResizeToZero(out_t);
at::cpu::threshold_out(out_t, in0_t, 0, 0);
} else {
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn});
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::tanh, aten_tanh, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::tanh(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createTanh();
return [te](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te->supports(in0_t)) {
fastResizeToZero(out_t);
at::cpu::tanh_out(out_t, in0_t);
} else {
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn});
}
};
});
REGISTER_OPERATOR_FUNCTOR(
aten::sigmoid,
aten_sigmoid,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::sigmoid(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createSigmoid();
return [te](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te->supports(in0_t)) {
fastResizeToZero(out_t);
at::cpu::sigmoid_out(out_t, in0_t);
} else {
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn});
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::logit, aten_logit, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::logit(Tensor self, float? eps=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
c10::optional<float> clamp = c10::nullopt;
if (n->inputs()[1]->node()->kind() == prim::Constant) {
auto clamp_d = toIValue(n->inputs()[1])->toOptional<double>();
clamp = clamp_d
? c10::make_optional<float>(static_cast<float>(clamp_d.value()))
: c10::nullopt;
}
auto te = clamp ? createLogit() : nullptr;
float clamp_value = clamp ? *clamp : 0.0f;
return [te, clamp_value](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te || !te->supports(in0_t)) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_d = p_node->Input(1).toOptional<double>();
fastResizeToZero(out_t);
at::native::logit_out(in0_t, in1_d, out_t);
} else {
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
float c = clamp_value;
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn, &c});
}
};
});
// TODO(T98923825): Uncomment this once the bug in this gets fixed.
/*
REGISTER_OPERATOR_FUNCTOR(aten::clone, aten_clone, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::clone(Tensor self, *, MemoryFormat? memory_format=None) ->
Tensor"))) { LogAndDumpSchema(n); return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& src = p_node->Input(0).toTensor();
const auto& optional_memory_format =
p_node->Input(1).toOptional<c10::MemoryFormat>();
auto memory_format =
optional_memory_format.value_or(c10::MemoryFormat::Preserve);
if (p_node->Output(0).isNone()) {
if (memory_format == c10::MemoryFormat::Preserve &&
src.is_non_overlapping_and_dense()) {
// Copy all strides
p_node->Output(0) =
at::empty_strided(src.sizes(), src.strides(), src.options());
} else {
memory_format = src.suggest_memory_format();
p_node->Output(0) = create_empty_from(src, memory_format);
}
}
auto& out_t = p_node->Output(0).toTensor();
at::native::resize_impl_cpu_(
out_t.unsafeGetTensorImpl(), src.sizes(), src.strides());
at::native::copy_(out_t, src, false);
};
});
*/
REGISTER_OPERATOR_FUNCTOR(
quantized::embedding_bag_byte_rowwise_offsets,
quantized_embedding_bag_byte_rowwise_offsets,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::embedding_bag_byte_rowwise_offsets(Tensor weight, Tensor indices, Tensor? offsets=None, bool scale_grad_by_freq=False, int mode=0, bool pruned_weights=False, Tensor? per_sample_weights=None, Tensor? compressed_indices_mapping=None, bool include_last_offset=False) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& weight = p_node->Input(0).toTensor();
const auto& indices = p_node->Input(1).toTensor();
const auto offsets = p_node->Input(2).toOptional<at::Tensor>();
const auto pruned_weights = p_node->Input(5).toBool();
const auto per_sample_weights =
p_node->Input(6).toOptional<at::Tensor>();
const auto compressed_indices_mapping =
p_node->Input(7).toOptional<at::Tensor>();
const auto include_last_offset = p_node->Input(8).toBool();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(weight, at::kFloat);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
return at::native::embedding_bag_byte_rowwise_offsets_out(
out_t,
weight,
indices,
offsets,
false, // unused scale_grad_by_freq
0, // unused mode
pruned_weights,
per_sample_weights,
compressed_indices_mapping,
include_last_offset);
};
});
REGISTER_OPERATOR_FUNCTOR(
quantized::embedding_bag_4bit_rowwise_offsets,
embedding_bag_4bit_rowwise_offsets,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::embedding_bag_4bit_rowwise_offsets(Tensor weight, Tensor indices, Tensor? offsets=None, bool scale_grad_by_freq=False, int mode=0, bool pruned_weights=False, Tensor? per_sample_weights=None, Tensor? compressed_indices_mapping=None, bool include_last_offset=False) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& weight = p_node->Input(0).toTensor();
const auto& indices = p_node->Input(1).toTensor();
const auto offsets = p_node->Input(2).toOptional<at::Tensor>();
const auto pruned_weights = p_node->Input(5).toBool();
const auto per_sample_weights =
p_node->Input(6).toOptional<at::Tensor>();
const auto compressed_indices_mapping =
p_node->Input(7).toOptional<at::Tensor>();
const auto include_last_offset = p_node->Input(8).toBool();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(weight, at::kFloat);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
return at::native::embedding_bag_4bit_rowwise_offsets_out(
out_t,
weight,
indices,
offsets,
false, // unused scale_grad_by_freq
0, // unused mode
pruned_weights,
per_sample_weights,
compressed_indices_mapping,
include_last_offset);
};
});
REGISTER_OPERATOR_FUNCTOR(
quantized::embedding_bag_byte_prepack,
embedding_bag_byte_prepack,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::embedding_bag_byte_prepack(Tensor weight) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& weight = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::qembeddingbag_byte_prepack(weight);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::qembeddingbag_byte_prepack_out(out_t, weight);
};
});
// The out variant takes precedence over native
REGISTER_OPERATOR_FUNCTOR(aten::narrow_copy, aten_narrow_copy, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::narrow_copy(Tensor self, int dim, int start, int length) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor(); // self
const auto dim = p_node->Input(1).toInt(); // dim
int64_t start = 0;
if (p_node->Input(2).isScalar()) {
start = p_node->Input(2).toInt();
} else {
auto& t = p_node->Input(2).toTensor();
start = t.item<int64_t>();
}
auto length = p_node->Input(3).toInt(); // length
if (p_node->Output(0).isNone()) {
p_node->Output(0) =
at::native::narrow_copy_dense_cpu(self, dim, start, length);
} else {
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::narrow_copy_dense_cpu_out(self, dim, start, length, output);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::index, aten_index, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::index.Tensor(Tensor self, Tensor?[] indices) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_l =
at::native::toListOfOptionalTensors(p_node->Input(1).toListRef());
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::index(in0_t, in1_l);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::index_out(out_t, in0_t, in1_l);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::pow, aten_pow, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor"))) {
return [](ProcessedNode* p_node) {
if (p_node->Output(0).isNone()) {
const auto& in0_t = p_node->Input(0).toTensor();
auto dtype =
at::native::result_type(in0_t, p_node->Input(1).toTensor());
p_node->Output(0) = create_empty_from(in0_t, dtype);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::pow_out(
out_t, p_node->Input(0).toTensor(), p_node->Input(1).toTensor());
};
}
if (n->matches(torch::schema(
"aten::pow.Scalar(Scalar self, Tensor exponent) -> Tensor"))) {
return [](ProcessedNode* p_node) {
if (p_node->Output(0).isNone()) {
const auto& in1_t = p_node->Input(1).toTensor();
auto dtype =
at::native::result_type(p_node->Input(0).toScalar(), in1_t);
p_node->Output(0) = at::native::empty_like(
in1_t,
dtype,
in1_t.options().layout_opt(),
in1_t.options().device_opt(),
in1_t.options().pinned_memory_opt(),
at::MemoryFormat::Preserve);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::pow_out(
out_t, p_node->Input(0).toScalar(), p_node->Input(1).toTensor());
};
}
if (n->matches(torch::schema(
"aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor"))) {
return [](ProcessedNode* p_node) {
if (p_node->Output(0).isNone()) {
const auto& in0_t = p_node->Input(0).toTensor();
auto dtype =
at::native::result_type(in0_t, p_node->Input(1).toScalar());
p_node->Output(0) = at::native::empty_like(
in0_t,
dtype,
in0_t.options().layout_opt(),
in0_t.options().device_opt(),
in0_t.options().pinned_memory_opt(),
at::MemoryFormat::Preserve);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::pow_out(
out_t, p_node->Input(0).toTensor(), p_node->Input(1).toScalar());
};
}
LogAndDumpSchema(n);
return nullptr;
});
// out variant takes precedence over native
// NB: This impl doesn't work for cpu->cuda copy/cast or vice versa.
REGISTER_OPERATOR_FUNCTOR(
static_runtime::to_copy,
aten_to_copy,
[](Node* n) -> SROperator {
// support 4- or 5-arg for adindexer/adfinder models
// Keep TORCH_CHECK here because there is no alternative for fallback
TORCH_CHECK(n->inputs().size() == 4 || n->inputs().size() == 5);
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
// ignore input 3 (copy)
auto non_blocking = p_node->Input(2).toBool(); // non_blocking
// handle memory format
bool copy_strides = false;
c10::optional<c10::MemoryFormat> memory_format = c10::nullopt;
if (p_node->inputs().size() == 5) {
memory_format = p_node->Input(4).toOptional<c10::MemoryFormat>();
}
memory_format = memory_format.value_or(c10::MemoryFormat::Preserve);
if (p_node->Output(0).isNone()) {
// handle dtype, layout, and device
c10::optional<at::ScalarType> dtype;
c10::Layout layout = self.layout();
c10::Device device = self.device();
if (p_node->Input(1).isTensor()) {
const auto& other = p_node->Input(1).toTensor();
dtype = other.scalar_type();
layout = other.layout();
device = other.device();
} else {
dtype = p_node->Input(1).toOptional<at::ScalarType>();
}
if (memory_format == c10::MemoryFormat::Preserve) {
if (self.is_non_overlapping_and_dense()) {
memory_format = c10::nullopt;
copy_strides = true;
} else {
memory_format = self.suggest_memory_format();
}
}
// See Note [Explicit nullopt MemoryFormat argument]
// Can't use size {0} if memory_format is ChannelLast
p_node->Output(0) = at::detail::empty_cpu(
self.sizes(),
dtype,
layout,
self.device(),
c10::nullopt,
memory_format);
}
copy_strides = copy_strides ||
(memory_format == c10::MemoryFormat::Preserve &&
self.is_non_overlapping_and_dense());
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::to_copy_out(
out_t, self, non_blocking, copy_strides, memory_format);
};
});
// Out variants for view ops are registered to a separate registry because
// their outputs (views) can't participate in memory reuse.
REGISTER_OPERATOR_FUNCTOR(
static_runtime::reshape_copy,
aten_reshape,
[](Node* n) -> SROperator {
TORCH_CHECK(n->inputs().size() == 2);
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor(); // self
const auto proposed_shape = p_node->Input(1).toIntVector(); // shape
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
auto& out = p_node->Output(0).toTensor();
at::native::reshape_copy_out(out, self, proposed_shape, true);
};
});
REGISTER_OPERATOR_FUNCTOR(
static_runtime::flatten_copy,
aten_flatten,
[](Node* n) -> SROperator {
TORCH_CHECK(n->inputs().size() == 3);
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto start_dim = p_node->Input(1).toInt();
const auto end_dim = p_node->Input(2).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
auto& out = p_node->Output(0).toTensor();
at::native::flatten_copy_out(out, self, start_dim, end_dim);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::sum, aten_sum, [](Node* n) -> SROperator {
if (n->inputs().size() != 2 && n->inputs().size() != 4) {
return nullptr;
}
if (!n->matches(torch::schema(
"aten::sum(Tensor self, *, ScalarType? dtype=None) -> Tensor")) &&
!n->matches(torch::schema(
"aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
if (n->matches(torch::schema(
"aten::sum(Tensor self, *, ScalarType? dtype=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const at::Tensor& self = p_node->Input(0).toTensor();
auto dtype = p_node->Input(1).toOptional<at::ScalarType>();
std::vector<int64_t> dim = {};
bool keepdim = false;
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::sum(self, dim, keepdim, dtype);
} else {
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::cpu::sum_out(output, self, dim, keepdim, dtype);
}
};
}
if (n->matches(torch::schema(
"aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const at::Tensor& self = p_node->Input(0).toTensor();
auto dim = p_node->Input(1).toIntList().vec();
auto keepdim = p_node->Input(2).toBool();
auto dtype = p_node->Input(3).toOptional<at::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::sum(self, dim, keepdim, dtype);
} else {
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::cpu::sum_out(output, self, dim, keepdim, dtype);
}
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::embedding_bag, aten_embedding_bag, [](Node* n) -> SROperator {
// TODO: Support only 9 args once the old signature has been removed.
if (!n->matches(torch::schema(
"aten::embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor)")) &&
!n->matches(torch::schema(
"aten::embedding_bag.padding_idx(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, bool include_last_offset, int? padding_idx) -> (Tensor, Tensor, Tensor, Tensor)"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& weight = p_node->Input(0).toTensor();
const auto& indices = p_node->Input(1).toTensor();
const auto& offsets = p_node->Input(2).toTensor();
auto scale_grad_by_freq = p_node->Input(3).toBool();
auto mode = p_node->Input(4).to<int64_t>();
auto sparse = p_node->Input(5).toBool();
auto per_sample_weights = p_node->Input(6).toOptional<at::Tensor>();
auto include_last_offset = p_node->Input(7).toBool();
c10::optional<int64_t> padding_idx;
if (p_node->inputs().size() == 9) {
if (p_node->Input(8).isNone()) {
padding_idx = c10::nullopt;
} else {
padding_idx = p_node->Input(8).toInt();
}
}
at::native::check_arguments(
weight,
indices,
offsets,
mode,
per_sample_weights,
include_last_offset);
std::ignore = scale_grad_by_freq;
std::ignore = sparse;
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::empty(
{include_last_offset ? offsets.sizes()[0] - 1 : offsets.sizes()[0],
weight.sizes()[1]},
weight.options());
} else {
at::native::resize_(
p_node->Output(0).toTensor(),
{include_last_offset ? offsets.sizes()[0] - 1 : offsets.sizes()[0],
weight.sizes()[1]},
c10::nullopt);
}
at::Tensor& output = p_node->Output(0).toTensor();
if (p_node->Output(1).isNone()) {
p_node->Output(1) = at::empty({0}, offsets.options());
}
at::Tensor& offset2bag = p_node->Output(1).toTensor();
at::native::make_offset2bag_out(
offset2bag,
output,
weight,
indices,
offsets,
mode,
per_sample_weights,
padding_idx.value_or(-1));
if (p_node->Output(2).isNone()) {
p_node->Output(2) = at::empty(offsets.sizes(), offsets.options());
}
at::Tensor& bag_size = p_node->Output(2).toTensor();
at::native::make_bag_size_out(
bag_size, offsets, indices, mode, include_last_offset, false);
if (p_node->Output(3).isNone()) {
p_node->Output(3) = at::empty(bag_size.sizes(), offsets.options());
}
at::Tensor& max_indices = p_node->Output(3).toTensor();
at::native::make_max_indices_out(
max_indices,
weight,
indices,
offsets,
bag_size,
mode,
include_last_offset);
at::native::_embedding_bag_cpu_impl_out(
output,
offset2bag,
bag_size,
max_indices,
weight,
indices,
offsets,
mode,
per_sample_weights,
include_last_offset,
padding_idx.value_or(-1));
};
});
REGISTER_OPERATOR_FUNCTOR(aten::repeat, aten_repeat, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::repeat(Tensor self, int[] repeats) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto repeats = p_node->Input(1).toIntVector();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::repeat(self, repeats);
} else {
at::Tensor& output = p_node->Output(0).toTensor();
at::native::repeat_out(output, self, repeats);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::sign, aten_sign, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::sign.Tensor(Tensor input) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::sign(in0_t);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::sign_out(out_t, in0_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::div, aten_div, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::div.Tensor(Tensor self, Tensor other) -> Tensor")) &&
!n->matches(torch::schema(
"aten::div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor")) &&
!n->matches(torch::schema(
"aten::div.Scalar(Tensor self, Scalar other) -> Tensor")) &&
!n->matches(torch::schema(
"aten::div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
c10::optional<c10::string_view> rounding_mode = c10::nullopt;
if (p_node->inputs().size() > 2) {
rounding_mode = p_node->Input(2).toOptional<c10::string_view>();
}
const auto& in1_t = p_node->Input(1).isTensor()
? p_node->Input(1).toTensor()
: at::native::wrapped_scalar_tensor(p_node->Input(1).toScalar());
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::div(in0_t, in1_t, rounding_mode);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::div_out(out_t, in0_t, in1_t, rounding_mode);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::log, aten_log, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::log.Tensor(Tensor input) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::log(in0_t);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::log_out(out_t, in0_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::sub, aten_sub, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
const auto alpha = p_node->Input(2).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::sub(in0_t, in1_t, alpha);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::sub_out(out_t, in0_t, in1_t, alpha);
}
};
}
if (n->matches(torch::schema(
"aten::sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t =
at::native::wrapped_scalar_tensor(p_node->Input(1).toScalar());
const auto alpha = p_node->Input(2).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::sub(in0_t, in1_t, alpha);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::sub_out(out_t, in0_t, in1_t, alpha);
}
};
}
LogAndDumpSchema(n);
return nullptr;
});
// TODO: support clamp_min.Tensor(Tensor self, Tensor min) -> Tensor
REGISTER_OPERATOR_FUNCTOR(
aten::clamp_min,
aten_clamp_min,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::clamp_min(Tensor self, Scalar min) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_s = p_node->Input(1).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::clamp_min(in0_t, in1_s);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::clamp_min_out(in0_t, in1_s, out_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::argmin, aten_argmin, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto dim = p_node->Input(1).toOptional<int64_t>();
const auto keepdim = p_node->Input(2).toBool();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::argmin(in0_t, dim, keepdim);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
if (in0_t.is_contiguous() && dim.has_value()) {
at::native::c2_argmin_out(out_t, in0_t, dim.value(), keepdim);
return;
}
at::cpu::argmin_out(out_t, in0_t, dim, keepdim);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::softmax, aten_softmax, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in_t = p_node->Input(0).toTensor();
const auto& dim = p_node->Input(1).toInt();
const auto& dtype = p_node->Input(2).toOptional<c10::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::softmax(in_t, dim, dtype);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
auto half_to_float = in_t.scalar_type() == at::ScalarType::Half &&
dtype == at::ScalarType::Float;
at::cpu::_softmax_out(out_t, in_t, dim, half_to_float);
}
};
});
REGISTER_OPERATOR_FUNCTOR(
static_runtime::layer_norm,
aten_layer_norm,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"static_runtime::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> (Tensor,Tensor,Tensor)"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
// ignore Input(5): `bool cudnn_enable=True`
const auto& input = p_node->Input(0).toTensor();
const auto normalized_shape = p_node->Input(1).toIntVector();
auto weight_opt = p_node->Input(2).toOptional<at::Tensor>();
auto bias_opt = p_node->Input(3).toOptional<at::Tensor>();
float eps = p_node->Input(4).toDouble();
c10::MaybeOwned<at::Tensor> weight_maybe_owned =
at::borrow_from_optional_tensor(weight_opt);
const at::Tensor& weight = *weight_maybe_owned;
c10::MaybeOwned<at::Tensor> bias_maybe_owned =
at::borrow_from_optional_tensor(bias_opt);
const at::Tensor& bias = *bias_maybe_owned;
auto M_N = at::native::_check_layer_norm_inputs(
input, normalized_shape, weight, bias);
auto M = M_N.first;
auto N = M_N.second;
auto X = input.expect_contiguous();
auto gamma = weight.expect_contiguous();
auto beta = bias.expect_contiguous();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::empty_like(
*X,
c10::nullopt /* dtype */,
c10::nullopt /* layout */,
c10::nullopt /* device */,
c10::nullopt /* pin_memory */,
at::MemoryFormat::Contiguous);
} else {
at::native::resize_(
p_node->Output(0).toTensor(), X->sizes(), c10::nullopt);
}
if (p_node->Output(1).isNone()) {
p_node->Output(1) = create_empty_from({M}, *X);
} else {
at::native::resize_(p_node->Output(1).toTensor(), {M}, c10::nullopt);
}
if (p_node->Output(2).isNone()) {
p_node->Output(2) = create_empty_from({M}, *X);
} else {
at::native::resize_(p_node->Output(2).toTensor(), {M}, c10::nullopt);
}
at::Tensor& output = p_node->Output(0).toTensor();
at::Tensor mean = p_node->Output(1).toTensor();
at::Tensor rstd = p_node->Output(2).toTensor();
at::native::layer_norm_cpu_out(
output,
mean,
rstd,
input,
normalized_shape,
*gamma,
*beta,
eps,
M,
N);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::norm, aten_norm, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::norm.ScalarOpt_dtype(Tensor self, Scalar? p, *, ScalarType dtype) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
const auto in1_s = p_node->Input(1).toOptional<at::Scalar>();
at::cpu::norm_outf(
in0_t,
in1_s,
c10::IntArrayRef{},
false,
p_node->Input(2).toScalarType(),
out_t);
};
}
if (n->matches(torch::schema(
"aten::norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
const auto in1_s = p_node->Input(1).toOptional<at::Scalar>();
at::cpu::norm_outf(
in0_t,
in1_s,
p_node->Input(2).toIntVector(), // dim
p_node->Input(3).toBool(), // keepdim
p_node->Input(4).toScalarType(), // dtype
out_t);
};
}
if (n->matches(torch::schema(
"aten::norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
const auto in1_s = p_node->Input(1).toOptional<at::Scalar>();
at::cpu::norm_outf(
in0_t,
in1_s,
p_node->Input(2).toIntVector(), // dim
p_node->Input(3).toBool(), // keepdim
out_t);
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::matmul, aten_matmul, [](Node* n) -> SROperator {
if (!n->matches(
torch::schema("aten::matmul(Tensor self, Tensor other) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::matmul(in0_t, in1_t);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::matmul_out(in0_t, in1_t, out_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(quantized::linear, quantized_linear, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::linear(Tensor X, __torch__.torch.classes.quantized.LinearPackedParamsBase W_prepack, float Y_scale_i, int Y_zero_point_i) -> Tensor Y"))) {
LogAndDumpSchema(n);
return nullptr;
}
const auto w = toIValue(n->inputs()[1]);
c10::intrusive_ptr<LinearPackedParamsBase> packed_weight;
if (w) {
packed_weight = w->toCustomClass<LinearPackedParamsBase>();
}
return [packed_weight](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto output_scale = p_node->Input(2).toDouble();
const auto output_zero_point = p_node->Input(3).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::empty_affine_quantized(
{0},
c10::kQUInt8,
c10::nullopt,
c10::kCPU,
false,
output_scale,
output_zero_point,
c10::nullopt);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
if (packed_weight) {
packed_weight->apply_out(input, output_scale, output_zero_point, out_t);
} else {
// Weights could be quantized on the fly
auto packed_weight_tmp =
p_node->Input(1).toCustomClass<LinearPackedParamsBase>();
packed_weight_tmp->apply_out(
input, output_scale, output_zero_point, out_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(
fb::quantized_linear,
fb_quantized_linear,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"fb::quantized_linear(Tensor X, __torch__.torch.classes.quantized.LinearPackedParamsBase w_prepack, Tensor Y_scale_i, Tensor Y_zero_point_i) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
const auto w = toIValue(n->inputs()[1]);
c10::intrusive_ptr<LinearPackedParamsBase> packed_weight;
if (w) {
packed_weight = w->toCustomClass<LinearPackedParamsBase>();
}
return [packed_weight](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto output_scale = p_node->Input(2).toTensor().item().toFloat();
const auto output_zero_point =
p_node->Input(3).toTensor().item().toLong();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::empty_affine_quantized(
{0},
c10::kQUInt8,
c10::nullopt,
c10::kCPU,
false,
output_scale,
output_zero_point,
c10::nullopt);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
if (packed_weight) {
packed_weight->apply_out(
input, output_scale, output_zero_point, out_t);
} else {
// Weights could be quantized on the fly
auto packed_weight_tmp =
p_node->Input(1).toCustomClass<LinearPackedParamsBase>();
packed_weight_tmp->apply_out(
input, output_scale, output_zero_point, out_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::full, aten_full, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::full(int[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& size = p_node->Input(0).toIntVector();
const auto fill_value = p_node->Input(1).toScalar();
if (p_node->Output(0).isNone()) {
const auto dtype = p_node->Input(2).toOptional<c10::ScalarType>();
const auto layout = p_node->Input(3).toOptional<c10::Layout>();
const auto device = p_node->Input(4).toOptional<c10::Device>();
const auto pin_memory = p_node->Input(5).toOptional<bool>();
p_node->Output(0) =
at::native::full(size, fill_value, dtype, layout, device, pin_memory);
} else {
p_node->Output(0) =
at::native::full_out(size, fill_value, p_node->Output(0).toTensor());
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::full_like, aten_full_like, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::full_like(Tensor self, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto in1_s = p_node->Input(1).toScalar();
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
const auto dtype = p_node->Input(2).toOptional<c10::ScalarType>();
const auto layout = p_node->Input(3).toOptional<c10::Layout>();
const auto device = p_node->Input(4).toOptional<c10::Device>();
const auto pin_memory = p_node->Input(5).toOptional<bool>();
const auto memory_format =
p_node->Input(6).toOptional<c10::MemoryFormat>();
p_node->Output(0) = at::native::empty_like(
in0_t, dtype, layout, device, pin_memory, memory_format);
}
auto& out_t = p_node->Output(0).toTensor();
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
at::native::fill_out(out_t, in1_s);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::linear, aten_linear, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
auto in2_t = p_node->Input(2).toOptional<at::Tensor>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::linear(in0_t, in1_t, in2_t);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::linear_out(out_t, in0_t, in1_t, in2_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::fmod, aten_fmod, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::fmod.Scalar(Tensor self, Scalar other) -> Tensor")) &&
!n->matches(torch::schema(
"aten::fmod.Tensor(Tensor self, Tensor other) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).isTensor()
? p_node->Input(1).toTensor()
: at::native::wrapped_scalar_tensor(p_node->Input(1).toScalar());
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::fmod(in0_t, in1_t);
} else {
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::fmod_out(out_t, in0_t, in1_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(aten::linalg_norm, aten_linalg_norm, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::linalg_norm(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto dim = p_node->Input(2).toIntVector();
const auto keepdim = p_node->Input(3).toBool();
const auto dtype = p_node->Input(4).toOptional<c10::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::linalg_norm(
input,
p_node->Input(1).toOptional<at::Scalar>(),
dim,
keepdim,
dtype);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::linalg_norm_out(
input,
p_node->Input(1).toOptional<at::Scalar>(),
dim,
keepdim,
dtype,
output);
};
}
if (n->matches(torch::schema(
"aten::linalg_norm.ord_str(Tensor self, str ord, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto dim = p_node->Input(2).toIntVector();
const auto keepdim = p_node->Input(3).toBool();
const auto dtype = p_node->Input(4).toOptional<c10::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::linalg_norm(
input, p_node->Input(1).toStringView(), dim, keepdim, dtype);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::linalg_norm_out(
input, p_node->Input(1).toStringRef(), dim, keepdim, dtype, output);
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::cat, aten_cat, [](Node* n) -> SROperator {
if (!n->matches(
torch::schema("aten::cat(Tensor[] tensors, int dim=0) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto inputs = p_node->Input(0).toTensorVector();
const auto dim = p_node->Input(1).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::_cat_cpu(inputs, dim);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::_cat_out_cpu(inputs, dim, output);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::cumsum, aten_cumsum, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::cumsum(Tensor self, int dim, ScalarType? dtype=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto dim = p_node->Input(1).toInt();
const auto dtype = p_node->Input(2).toOptional<c10::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::cumsum(input, dim, dtype);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::cpu::cumsum_out(output, input, dim, dtype);
};
});
REGISTER_OPERATOR_FUNCTOR(
aten::nonzero,
aten_nonzero,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::nonzero(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::nonzero_cpu(input);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::nonzero_out_cpu(input, output);
};
});
namespace {
void check_cat_no_zero_dim(const std::vector<at::Tensor>& tensors) {
for (const auto i : c10::irange(tensors.size())) {
auto& t = tensors[i];
TORCH_CHECK(
t.dim() > 0,
"zero-dimensional tensor (at position ",
i,
") cannot be concatenated");
}
}
} // namespace
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
prim::VarConcat,
prim_VarConcat,
[](Node* n) -> SROperator {
return [](ProcessedNode* p_node) {
const size_t num_inputs = p_node->inputs().size();
std::vector<at::Tensor> inputs(num_inputs - 1);
for (const auto i : c10::irange(num_inputs - 1)) {
inputs[i] = p_node->Input(i).toTensor();
}
auto dim = p_node->Input(num_inputs - 1).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cat(inputs, dim);
} else {
check_cat_no_zero_dim(inputs);
dim = legacy_cat_wrap_dim(dim, inputs);
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::_cat_out_cpu(inputs, dim, out_t);
}
};
});
namespace {
// This template and its specialization help us avoid compiler warnings
// about taking the absolute value of an unsigned type in signed_log1p
template <class T>
T abs_if_signed(T val) {
return std::abs(val);
}
template <>
unsigned char abs_if_signed<unsigned char>(unsigned char val) {
return val;
}
// Computes f(x) = sign(x) * ln(|1 + x|) for each x in the input tensor
void signed_log1p_out(at::Tensor& out, const at::Tensor& input) {
at::native::resize_(out, input.sizes(), c10::nullopt);
const auto input_contig = input.expect_contiguous();
auto output_contig = out.expect_contiguous();
AT_DISPATCH_ALL_TYPES(input.scalar_type(), "signed_log1p_kernel", [&]() {
const auto input_data = input_contig->data_ptr<scalar_t>();
auto output_data = output_contig->data_ptr<float>();
const auto N = input.numel();
for (const auto i : c10::irange(N)) {
const int sign = input_data[i] < 0 ? -1 : 1;
output_data[i] = std::log1p(abs_if_signed(input_data[i])) * sign;
}
});
}
at::Tensor signed_log1p(const at::Tensor& input) {
auto out = create_empty_from(input);
signed_log1p_out(out, input);
return out;
}
} // namespace
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
static_runtime::signed_log1p,
static_runtime_signed_log1p,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"static_runtime::signed_log1p(Tensor x) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createSignedLog1p();
return [te](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(input);
}
auto& out = p_node->Output(0).toTensor();
if (!te || !te->supports(input)) {
fastResizeToZero(out);
signed_log1p_out(out, input);
return;
}
at::native::resize_(out, input.sizes(), c10::nullopt);
int64_t nn = input.numel();
te->call({out.data_ptr(), input.data_ptr(), &nn});
};
});
REGISTER_OPERATOR_FUNCTOR(
aten::remainder,
aten_remainder,
[](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::remainder.Tensor(Tensor self, Tensor other) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) =
at::cpu::remainder(self, p_node->Input(1).toTensor());
} else {
auto& out = p_node->Output(0).toTensor();
fastResizeToZero(out);
at::cpu::remainder_out(out, self, p_node->Input(1).toTensor());
}
};
}
if (n->matches(torch::schema(
"aten::remainder.Scalar(Tensor self, Scalar other) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) =
at::native::remainder(self, p_node->Input(1).toScalar());
} else {
auto& out = p_node->Output(0).toTensor();
fastResizeToZero(out);
at::native::remainder_out(self, p_node->Input(1).toScalar(), out);
}
};
}
// Unrecognized overload
LogAndDumpSchema(n);
return nullptr;
});
} // namespace jit
} // namespace torch