pytorch/torch/fx/experimental/normalize.py
Philip Meier d5988c5eca remove unused type: ignore directives (#60006)
Summary:
During development it is common practice to put `type: ignore` comments on lines that are correct, but `mypy` doesn't recognize this. This often stems from the fact, that the used `mypy` version wasn't able to handle the used pattern.

With every new release `mypy` gets better at handling complex code. In addition to fix all the previously accepted but now failing patterns, we should also revisit all `type: ignore` comments to see if they are still needed or not. Fortunately, we don't need to do it manually: by adding `warn_unused_ignores = True` to the configuration, `mypy` will error out in case it encounters an `type: ignore` that is no longer needed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60006

Reviewed By: jbschlosser, malfet

Differential Revision: D29133237

Pulled By: albanD

fbshipit-source-id: 41e82edc5cd5affa7ccedad044b59b94dad4425a
2021-06-18 07:23:31 -07:00

161 lines
5.3 KiB
Python

import operator
from typing import Any, Callable, Dict, Tuple, Optional
import torch
import torch.fx
import torch.fx as fx
from torch.fx import Transformer, Proxy
from torch.fx.node import Argument, Target, Node, map_aggregate
from torch.fx.operator_schemas import (
normalize_module,
normalize_function,
create_type_hint,
)
from .schema_type_annotation import AnnotateTypesWithSchema
class NormalizeArgs(Transformer):
"""
Normalize arguments to Python targets. This means that
`args/kwargs` will be matched up to the module/functional's
signature and rewritten to exclusively kwargs in positional order
if `normalize_to_only_use_kwargs` is true. Also populates default
values. Does not support positional-only parameters or varargs
parameters (*args, **kwargs).
If the nodes have 'type' metadata, it will use it to disambiguate
overloads. Otherwise, it will throw an error.
Example usage:
m = torchvision.models.resnet18()
traced = torch.fx.symbolic_trace(m)
traced = NormalizeArgs(traced).transform()
"""
def __init__(
self, module: torch.nn.Module, normalize_to_only_use_kwargs: bool = True
):
super().__init__(module)
self.node_map: Dict[Proxy, Node] = {}
self.normalize_to_only_use_kwargs = normalize_to_only_use_kwargs
def run_node(self, n: Node) -> Any:
args, kwargs = self.fetch_args_kwargs_from_env(n)
def get_type(arg):
if isinstance(arg, fx.Node):
return n.meta["type"] if "type" in n.meta else None
return type(arg)
arg_types = map_aggregate(n.args, get_type)
assert isinstance(arg_types, tuple)
arg_types = tuple([create_type_hint(i) for i in arg_types])
kwarg_types = {k: get_type(v) for k, v in kwargs.items()}
if n.op == "call_function":
out = self.call_function(n.target, args, kwargs, arg_types, kwarg_types)
else:
out = super().run_node(n)
if n.op != "output":
self.node_map[out] = n
return out
def call_function(
self,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Any],
arg_types: Optional[Tuple[Any, ...]] = None,
kwarg_types: Optional[Dict[str, Any]] = None,
):
assert callable(target)
new_args_and_kwargs = normalize_function(
target,
args, # type: ignore[arg-type]
kwargs,
arg_types, # type: ignore[arg-type]
kwarg_types,
self.normalize_to_only_use_kwargs,
)
if new_args_and_kwargs:
new_args, new_kwargs = new_args_and_kwargs
return self.tracer.create_proxy(
"call_function", target, new_args, new_kwargs
)
else:
return super().call_function(target, args, kwargs)
def call_module(
self, target: Target, args: Tuple[Argument, ...], kwargs: Dict[str, Any]
):
assert isinstance(target, str)
new_args_and_kwargs = normalize_module(
self.module,
target,
args, # type: ignore[arg-type]
kwargs,
self.normalize_to_only_use_kwargs,
)
if new_args_and_kwargs:
new_args, new_kwargs = new_args_and_kwargs
return super().call_module(target, new_args, new_kwargs)
else:
return super().call_module(target, args, kwargs)
class NormalizeOperators(AnnotateTypesWithSchema):
"""
Normalize callsites that are different ways of "spelling" the same
invocation into a single, canonical call. Currently supports:
1. Normalize operators (e.g. operator.add) to the `torch` ops they
ultimately invoke (e.g. torch.add) when it is possible to statically
reason that
Example usage:
m = torchvision.models.resnet18()
traced = torch.fx.symbolic_trace(m)
traced = NormalizeOperators(traced).transform()
"""
binary_magic_method_remap: Dict[
Callable[[Any, Any], Any], Callable[[Any, Any], Any]
] = {
torch.add: operator.add,
torch.mul: operator.mul,
torch.sub: operator.sub,
torch.div: operator.truediv,
torch.floor_divide: operator.floordiv,
torch.remainder: operator.mod,
torch.eq: operator.eq,
torch.ne: operator.ne,
torch.lt: operator.lt,
torch.le: operator.le,
torch.gt: operator.gt,
torch.ge: operator.ge,
}
def call_function(
self, target: Target, args: Tuple[Argument, ...], kwargs: Dict[str, Any]
):
# Normalize operators according to the magic methods implemented on tensors here:
# https://github.com/pytorch/pytorch/blob/28c5d90b679c6b38bf4183ec99f16d933c2f1bcd/tools/autograd/templates/python_variable_methods.cpp#L1137 # noqa: B950
assert callable(target)
if target in self.binary_magic_method_remap:
if len(args) != 2:
return super().call_function(target, args, kwargs)
lhs, rhs = args
return super().call_function(
target=self.binary_magic_method_remap[target],
args=(lhs, rhs),
kwargs={},
)
return super().call_function(target, args, kwargs)