pytorch/torch/distributed/fsdp/_wrap_utils.py
Andrew Gu d58f75be8b [FSDP][1/N] Move wrapper ModuleWrapPolicy to new path (#104346)
This PR is the first in refactoring the auto wrapping, only affecting `ModuleWrapPolicy` for wrapper `FullyShardedDataParallel`. The end goal is to improve the auto wrapping infra to support:
- Checking valid frozen parameters (uniform frozenness per FSDP)
- Checking valid shared parameters (shared parameters assigned to their lowest-common-ancestor module or higher)
- Writing auto wrapping policies that may take multiple passes over the module tree
- Specifying different FSDP kwargs per FSDP instance (instead of enforcing the same for all FSDP instances constructed via an auto wrap policy)

The way I envision achieving this is that, we decouple the actual "wrapping" (which is `_post_order_apply()` in this PR) from constructing the wrapping targets and kwargs (which is `target_module_to_kwargs` in this PR). In that way, a policy reduces to just constructing that latter `target_module_to_kwargs` mapping.

I do not personally recommend the size-based policy, but if we wanted to implement that under this new organization, the tracking of wrapped/nonwrapped numel should be done in the pass over the module tree prior to the actual "wrapping". This modularization keeps the actual "wrapping" part simple.

The change to how `old_dtype` is handled is mainly to avoid keeping a reference to `_override_module_mixed_precision()` function closure in each hook and to allow the function to take in all module clases at once to return which ones actually got overridden for the downstream error message. (We can directly store the global state as a mapping.)

To-do in follow-ups (not in order):
- Add frozen parameter check before `_post_order_apply()`
- Add shared parameter check before `_post_order_apply()`
- Expose wrapping policy that allows per module / per module class kwarg customization (where any unspecified kwarg adopts the root's kwarg)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104346
Approved by: https://github.com/rohan-varma, https://github.com/fegin
2023-07-08 12:40:07 +00:00

228 lines
9.1 KiB
Python

import collections
import functools
import warnings
from functools import partial
from typing import Any, Deque, Dict, List, NamedTuple, Set, Tuple, Type
import torch
import torch.nn as nn
from torch.distributed.fsdp._common_utils import _is_fsdp_flattened
from torch.distributed.fsdp._utils import _override_module_mixed_precision
from torch.distributed.fsdp.wrap import (
_construct_wrap_fn,
_FSDPPolicy,
_or_policy,
_post_order_apply,
_recursive_wrap,
_run_mixed_precision_override_policy,
_run_module_wrap_policy,
_wrap_module_cls_individually,
ModuleWrapPolicy,
)
class FullyShardedModuleState(NamedTuple):
"""
Module state for ``_get_fully_sharded_module_to_states()``, representing
a logical grouping (e.g. parameters to be flattened together).
"""
params: List[nn.Parameter]
buffers: List[torch.Tensor]
def _auto_wrap(
auto_wrap_kwargs: Dict[str, Any],
fsdp_kwargs: Dict[str, Any],
module_wrapper_cls: Any, # e.g. `FullyShardedDataParallel`
) -> None:
"""
Recursively auto wraps the root module given by the key "module" in
``auto_wrap_kwargs`` with the arguments in ``auto_wrap_kwargs`` and
``fsdp_kwargs``.
Precondition: ``auto_wrap_policy`` contains the arguments expected by
``_recursive_wrap()``, where ``auto_wrap_policy`` is not ``None``.
``fsdp_kwargs`` contains all FSDP arguments except ``module``.
"""
root_module = auto_wrap_kwargs["module"]
auto_wrap_policy = auto_wrap_kwargs["auto_wrap_policy"]
ignored_modules = auto_wrap_kwargs["ignored_modules"]
mixed_precision = fsdp_kwargs["mixed_precision"]
_check_nested_wrapping(root_module, module_wrapper_cls)
# TODO: Start migration to refactored auto wrapping with `ModuleWrapPolicy`
if isinstance(auto_wrap_policy, ModuleWrapPolicy):
module_classes = auto_wrap_policy._module_classes
fsdp_kwargs["auto_wrap_policy"] = None
target_module_to_kwargs = _run_module_wrap_policy(
root_module, module_classes, ignored_modules, fsdp_kwargs
)
if mixed_precision is not None:
target_module_to_kwargs = _run_mixed_precision_override_policy(
root_module,
mixed_precision._module_classes_to_ignore,
ignored_modules,
fsdp_kwargs,
target_module_to_kwargs,
)
overridden_module_classes = _override_module_mixed_precision(
root_module, mixed_precision._module_classes_to_ignore
)
_warn_on_overridden_mixed_precision(overridden_module_classes)
wrap_fn = _construct_wrap_fn(
root_module, target_module_to_kwargs, module_wrapper_cls
)
_post_order_apply(root_module, wrap_fn)
return
# Support new way to pass an auto wrap policy
if isinstance(auto_wrap_policy, _FSDPPolicy):
auto_wrap_policy = auto_wrap_policy.policy
assert auto_wrap_policy is not None
if mixed_precision is not None:
# Wrap modules of the ignored types separately and register forward
# hooks to cast to fp32 and back to the original dtype, respectively
overridden_module_classes = _override_module_mixed_precision(
root_module, mixed_precision._module_classes_to_ignore
)
auto_wrap_policy = functools.partial(
_or_policy,
policies=[
auto_wrap_policy,
partial(
_wrap_module_cls_individually,
module_classes=mixed_precision._module_classes_to_ignore,
),
],
)
auto_wrap_kwargs["auto_wrap_policy"] = auto_wrap_policy
_warn_on_overridden_mixed_precision(overridden_module_classes)
_recursive_wrap(**auto_wrap_kwargs, **fsdp_kwargs)
def _check_nested_wrapping(
root_module: nn.Module,
wrapper_cls: Any, # e.g. `FullyShardedDataParallel`
):
# For auto wrapping, submodules should not already be wrapped with FSDP
# since double wrapping is not supported
for module_name, module in root_module.named_modules():
if isinstance(module, wrapper_cls):
raise ValueError(
f"Expected {module_name} to NOT be FullyShardedDataParallel "
"if using an `auto_wrap_policy`"
)
def _warn_on_overridden_mixed_precision(
overridden_module_classes: Set[Type[nn.Module]],
):
if len(overridden_module_classes) == 0:
return
warnings.warn(
"Both mixed precision and an auto_wrap_policy were specified to FSDP, "
f"where the wrapped module has submodules of type:\n{overridden_module_classes}\n"
"These modules will be wrapped as separate FSDP instacnes with mixed "
"precision disabled."
)
def _get_fully_sharded_module_to_states(
root_module: nn.Module,
auto_wrap_policy: _FSDPPolicy,
ignored_modules: Set[nn.Module],
ignored_params: Set[nn.Parameter],
) -> Dict[nn.Module, FullyShardedModuleState]:
"""
Returns a mapping from fully sharded module to its parameters, buffers,
parameter names, and buffer names, where each entry logically represents a
grouping according to the given auto wrap policy and ignored
modules/parameters. However, this method does not actually perform any
module wrapping.
The mapped-to values are the states from the subtree rooted at the
corresponding submodule key, excluding child submodules in the mapping and
ignored state. Sibling submodules cannot be grouped together. The parameter
and buffer names are prefixed starting from the submodule.
Each non-ignored parameter and buffer appears exactly once in the returned
``dict``, and the ``dict`` is ordered by increasing tree depth. A mapped-to
parameter list may be empty if the fully sharded module has no parameters
or if its parameters were assigned to a parent fully sharded module
instead.
"""
# Record the modules to wrap without actually wrapping
wrapped_modules_set: Set[nn.Module] = set() # these are only logically wrapped
wrapper_cls = functools.partial(_record_module_wrapper_cls, wrapped_modules_set)
if auto_wrap_policy is not None:
_recursive_wrap(
root_module,
auto_wrap_policy=auto_wrap_policy.policy,
wrapper_cls=wrapper_cls,
ignored_modules=ignored_modules,
ignored_params=ignored_params,
only_wrap_children=False,
)
# Always include the root module even if not wrapped by the given policy
wrapped_modules_set.add(root_module)
fully_sharded_module_to_states = collections.OrderedDict()
visited_params = set()
for ignored_param in ignored_params:
visited_params.add(ignored_param)
visited_buffers = set()
# Construct `wrapped_modules` to follow `.modules()` order to ensure that
# downstream data structures (`._handles`) match those of the wrapper path.
# NOTE: Since `.modules()` follows a depth-first order, which is a
# topological sort, and we iterate over `wrapped_modules` following that
# order, parent-child shared parameters are assigned to the parent module.
wrapped_modules: List[nn.Module] = []
for module in root_module.modules():
if module in wrapped_modules_set:
wrapped_modules.append(module)
for submodule in wrapped_modules:
# Perform a DFS from `submodule` and record all unvisited state that is
# not already associated with another module in `wrapped_modules`. We
# use DFS to follow the `.modules()` order.
deque: Deque[Tuple[nn.Module, str]] = collections.deque()
deque.append((submodule, ""))
params: List[nn.Parameter] = []
buffers: List[torch.Tensor] = []
while len(deque) > 0:
module, prefix = deque.popleft()
# Reverse `named_children()`, use `appendleft()`, and add to the
# deque before processing to perform non-recursive DFS
for child_module_name, child_module in reversed(
list(module.named_children())
):
if child_module not in wrapped_modules_set:
deque.appendleft((child_module, prefix + child_module_name + "."))
for param in module.parameters(recurse=False):
if param not in visited_params and not _is_fsdp_flattened(param):
params.append(param)
visited_params.add(param)
for buffer in module.buffers(recurse=False):
if buffer not in visited_buffers:
buffers.append(buffer)
visited_buffers.add(buffer)
fully_sharded_module_to_states[submodule] = FullyShardedModuleState(
params, buffers
)
return fully_sharded_module_to_states
def _record_module_wrapper_cls(
wrapped_modules_set: Set[nn.Module],
module: nn.Module,
**kwargs,
) -> nn.Module:
"""
This defines a pseudo-wrapper class to be passed to ``_recursive_wrap()``
that records the wrapped module to the input ``wrapped_modules_set``
without actually wrapping with a class.
"""
wrapped_modules_set.add(module)
return module