pytorch/torch/sparse/__init__.py
joncrall 4618371da5 Integrate xdoctest - Rebased (#82797)
This is a new version of #15648 based on the latest master branch.

Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.

In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)

Fixes https://github.com/pytorch/pytorch/issues/71105

@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
2022-08-12 02:08:01 +00:00

360 lines
13 KiB
Python

# The Tensor classes are added to this module by python_tensor.cpp
from typing import Optional, Tuple, List, Union
import torch
from torch._C import _add_docstr, _sparse # type: ignore[attr-defined]
from torch import Tensor
# A workaround to support both TorchScript and MyPy:
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from torch.types import _dtype as DType
DimOrDims = Optional[Union[int, Tuple[int], List[int]]]
else:
# The JIT doesn't understand Union, nor torch.dtype here
DType = int
DimOrDims = Optional[Tuple[int]]
__all__ = [
'addmm',
'mm',
'sum',
'softmax',
'log_softmax',
]
addmm = _add_docstr(_sparse._sparse_addmm, r"""
sparse.addmm(mat, mat1, mat2, *, beta=1., alpha=1.) -> Tensor
This function does exact same thing as :func:`torch.addmm` in the forward,
except that it supports backward for sparse COO matrix :attr:`mat1`.
When :attr:`mat1` is a COO tensor it must have `sparse_dim = 2`.
When inputs are COO tensors, this function also supports backward for both inputs.
Supports both CSR and COO storage formats.
.. note::
This function doesn't support computing derivaties with respect to CSR matrices.
Args:
mat (Tensor): a dense matrix to be added
mat1 (Tensor): a sparse matrix to be multiplied
mat2 (Tensor): a dense matrix to be multiplied
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
""")
mm = _add_docstr(_sparse._sparse_mm, r"""
Performs a matrix multiplication of the sparse matrix :attr:`mat1`
and the (sparse or strided) matrix :attr:`mat2`. Similar to :func:`torch.mm`, if :attr:`mat1` is a
:math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, out will be a
:math:`(n \times p)` tensor.
When :attr:`mat1` is a COO tensor it must have `sparse_dim = 2`.
When inputs are COO tensors, this function also supports backward for both inputs.
Supports both CSR and COO storage formats.
.. note::
This function doesn't support computing derivaties with respect to CSR matrices.
Args:
mat1 (Tensor): the first sparse matrix to be multiplied
mat2 (Tensor): the second matrix to be multiplied, which could be sparse or dense
Shape:
The format of the output tensor of this function follows:
- sparse x sparse -> sparse
- sparse x dense -> dense
Example::
>>> a = torch.randn(2, 3).to_sparse().requires_grad_(True)
>>> a
tensor(indices=tensor([[0, 0, 0, 1, 1, 1],
[0, 1, 2, 0, 1, 2]]),
values=tensor([ 1.5901, 0.0183, -0.6146, 1.8061, -0.0112, 0.6302]),
size=(2, 3), nnz=6, layout=torch.sparse_coo, requires_grad=True)
>>> b = torch.randn(3, 2, requires_grad=True)
>>> b
tensor([[-0.6479, 0.7874],
[-1.2056, 0.5641],
[-1.1716, -0.9923]], requires_grad=True)
>>> y = torch.sparse.mm(a, b)
>>> y
tensor([[-0.3323, 1.8723],
[-1.8951, 0.7904]], grad_fn=<SparseAddmmBackward>)
>>> y.sum().backward()
>>> a.grad
tensor(indices=tensor([[0, 0, 0, 1, 1, 1],
[0, 1, 2, 0, 1, 2]]),
values=tensor([ 0.1394, -0.6415, -2.1639, 0.1394, -0.6415, -2.1639]),
size=(2, 3), nnz=6, layout=torch.sparse_coo)
""")
sampled_addmm = _add_docstr(_sparse.sparse_sampled_addmm, r"""
sparse.sampled_addmm(input, mat1, mat2, *, beta=1., alpha=1., out=None) -> Tensor
Performs a matrix multiplication of the dense matrices :attr:`mat1` and :attr:`mat2` at the locations
specified by the sparsity pattern of :attr:`input`. The matrix :attr:`input` is added to the final result.
Mathematically this performs the following operation:
.. math::
\text{out} = \alpha\ (\text{mat1} \mathbin{@} \text{mat2})*\text{spy}(\text{input}) + \beta\ \text{input}
where :math:`\text{spy}(\text{input})` is the sparsity pattern matrix of :attr:`input`, :attr:`alpha`
and :attr:`beta` are the scaling factors.
:math:`\text{spy}(\text{input})` has value 1 at the positions where :attr:`input` has non-zero values, and 0 elsewhere.
.. note::
:attr:`input` must be a sparse CSR tensor. :attr:`mat1` and :attr:`mat2` must be dense tensors.
This function is implemented only for tensors on CUDA devices.
Args:
input (Tensor): a sparse CSR matrix of shape `(m, n)` to be added and used to compute
the sampled matrix multiplication
mat1 (Tensor): a dense matrix of shape `(m, k)` to be multiplied
mat2 (Tensor): a dense matrix of shape `(k, n)` to be multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
Examples::
>>> input = torch.eye(3, device='cuda').to_sparse_csr()
>>> mat1 = torch.randn(3, 5, device='cuda')
>>> mat2 = torch.randn(5, 3, device='cuda')
>>> torch.sparse.sampled_addmm(input, mat1, mat2)
tensor(crow_indices=tensor([0, 1, 2, 3]),
col_indices=tensor([0, 1, 2]),
values=tensor([ 0.2847, -0.7805, -0.1900]), device='cuda:0',
size=(3, 3), nnz=3, layout=torch.sparse_csr)
>>> torch.sparse.sampled_addmm(input, mat1, mat2).to_dense()
tensor([[ 0.2847, 0.0000, 0.0000],
[ 0.0000, -0.7805, 0.0000],
[ 0.0000, 0.0000, -0.1900]], device='cuda:0')
>>> torch.sparse.sampled_addmm(input, mat1, mat2, beta=0.5, alpha=0.5)
tensor(crow_indices=tensor([0, 1, 2, 3]),
col_indices=tensor([0, 1, 2]),
values=tensor([ 0.1423, -0.3903, -0.0950]), device='cuda:0',
size=(3, 3), nnz=3, layout=torch.sparse_csr)
""")
def sum(input: Tensor, dim: DimOrDims = None,
dtype: Optional[DType] = None) -> Tensor:
r"""
Returns the sum of each row of the sparse tensor :attr:`input` in the given
dimensions :attr:`dim`. If :attr:`dim` is a list of dimensions,
reduce over all of them. When sum over all ``sparse_dim``, this method
returns a dense tensor instead of a sparse tensor.
All summed :attr:`dim` are squeezed (see :func:`torch.squeeze`), resulting an output
tensor having :attr:`dim` fewer dimensions than :attr:`input`.
During backward, only gradients at ``nnz`` locations of :attr:`input`
will propagate back. Note that the gradients of :attr:`input` is coalesced.
Args:
input (Tensor): the input sparse tensor
dim (int or tuple of ints): a dimension or a list of dimensions to reduce. Default: reduce
over all dims.
dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor.
Default: dtype of :attr:`input`.
Example::
>>> nnz = 3
>>> dims = [5, 5, 2, 3]
>>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)),
torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz)
>>> V = torch.randn(nnz, dims[2], dims[3])
>>> size = torch.Size(dims)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> S = torch.sparse_coo_tensor(I, V, size)
>>> S
tensor(indices=tensor([[2, 0, 3],
[2, 4, 1]]),
values=tensor([[[-0.6438, -1.6467, 1.4004],
[ 0.3411, 0.0918, -0.2312]],
[[ 0.5348, 0.0634, -2.0494],
[-0.7125, -1.0646, 2.1844]],
[[ 0.1276, 0.1874, -0.6334],
[-1.9682, -0.5340, 0.7483]]]),
size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo)
# when sum over only part of sparse_dims, return a sparse tensor
>>> torch.sparse.sum(S, [1, 3])
tensor(indices=tensor([[0, 2, 3]]),
values=tensor([[-1.4512, 0.4073],
[-0.8901, 0.2017],
[-0.3183, -1.7539]]),
size=(5, 2), nnz=3, layout=torch.sparse_coo)
# when sum over all sparse dim, return a dense tensor
# with summed dims squeezed
>>> torch.sparse.sum(S, [0, 1, 3])
tensor([-2.6596, -1.1450])
"""
if dtype is None:
if dim is not None:
return torch._sparse_sum(input, dim)
else:
return torch._sparse_sum(input)
else:
if dim is not None:
return torch._sparse_sum(input, dim, dtype=dtype)
else:
return torch._sparse_sum(input, dtype=dtype)
softmax = _add_docstr(_sparse._sparse_softmax, r"""
sparse.softmax(input, dim, *, dtype=None) -> Tensor
Applies a softmax function.
Softmax is defined as:
:math:`\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}`
where :math:`i, j` run over sparse tensor indices and unspecified
entries are ignores. This is equivalent to defining unspecified
entries as negative infinity so that :math:`exp(x_k) = 0` when the
entry with index :math:`k` has not specified.
It is applied to all slices along `dim`, and will re-scale them so
that the elements lie in the range `[0, 1]` and sum to 1.
Args:
input (Tensor): input
dim (int): A dimension along which softmax will be computed.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. This is useful for preventing data type
overflows. Default: None
""")
log_softmax = _add_docstr(_sparse._sparse_log_softmax, r"""
sparse.log_softmax(input, dim, *, dtype=None) -> Tensor
Applies a softmax function followed by logarithm.
See :class:`~torch.sparse.softmax` for more details.
Args:
input (Tensor): input
dim (int): A dimension along which softmax will be computed.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. This is useful for preventing data type
overflows. Default: None
""")
spdiags = _add_docstr(
_sparse._spdiags,
r"""
sparse.spdiags(diagonals, offsets, shape, layout=None) -> Tensor
Creates a sparse 2D tensor by placing the values from rows of
:attr:`diagonals` along specified diagonals of the output
The :attr:`offsets` tensor controls which diagonals are set.
- If :attr:`offsets[i]` = 0, it is the main diagonal
- If :attr:`offsets[i]` < 0, it is below the main diagonal
- If :attr:`offsets[i]` > 0, it is above the main diagonal
The number of rows in :attr:`diagonals` must match the length of :attr:`offsets`,
and an offset may not be repeated.
Args:
diagonals (Tensor): Matrix storing diagonals row-wise
offsets (Tensor): The diagonals to be set, stored as a vector
shape (2-tuple of ints): The desired shape of the result
Keyword args:
layout (:class:`torch.layout`, optional): The desired layout of the
returned tensor. ``torch.sparse_coo``, ``torch.sparse_csc`` and ``torch.sparse_csr``
are supported. Default: ``torch.sparse_coo``
Examples:
Set the main and first two lower diagonals of a matrix::
>>> diags = torch.arange(9).reshape(3, 3)
>>> diags
tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3))
>>> s
tensor(indices=tensor([[0, 1, 2, 1, 2, 2],
[0, 1, 2, 0, 1, 0]]),
values=tensor([0, 1, 2, 3, 4, 6]),
size=(3, 3), nnz=6, layout=torch.sparse_coo)
>>> s.to_dense()
tensor([[0, 0, 0],
[3, 1, 0],
[6, 4, 2]])
Change the output layout::
>>> diags = torch.arange(9).reshape(3, 3)
>>> diags
tensor([[0, 1, 2],[3, 4, 5], [6, 7, 8])
>>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3), layout=torch.sparse_csr)
>>> s
tensor(crow_indices=tensor([0, 1, 3, 6]),
col_indices=tensor([0, 0, 1, 0, 1, 2]),
values=tensor([0, 3, 1, 6, 4, 2]), size=(3, 3), nnz=6,
layout=torch.sparse_csr)
>>> s.to_dense()
tensor([[0, 0, 0],
[3, 1, 0],
[6, 4, 2]])
Set partial diagonals of a large output::
>>> diags = torch.tensor([[1, 2], [3, 4]])
>>> offsets = torch.tensor([0, -1])
>>> torch.sparse.spdiags(diags, offsets, (5, 5)).to_dense()
tensor([[1, 0, 0, 0, 0],
[3, 2, 0, 0, 0],
[0, 4, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
.. note::
When setting the values along a given diagonal the index into the diagonal
and the index into the row of :attr:`diagonals` is taken as the
column index in the output. This has the effect that when setting a diagonal
with a positive offset `k` the first value along that diagonal will be
the value in position `k` of the row of :attr:`diagonals`
Specifying a positive offset::
>>> diags = torch.tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
>>> torch.sparse.spdiags(diags, torch.tensor([0, 1, 2]), (5, 5)).to_dense()
tensor([[1, 2, 3, 0, 0],
[0, 2, 3, 0, 0],
[0, 0, 3, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
""")