mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
**Why this PR?** For the composable APIs implementation, sometimes the internal APIs may not have the application (FSDP, DDP) root module but only the local module. One example is the state_dict/optimizer_state_dict implementation of FSDP. These APIs are designed to start with the root module of the model. It is tricky for these APIs to tell whether a random submodule is managed by either DDP or FSDP. It will be useful to have APIs like: `_get_module_state(module)`: return the composable state if this module is managed by composable API. `_get_module_fsdp_state(module)`: return the FSDP state if this module is managed by FSDP. **What does this PR propose?** 1. Make `_State` out of `_composable` module so that `FullyShardedDataParallel` can inherit from it. 2. A global `_module_state_mapping: Dict[nn.Module, _State]` that keeps the mapping of all submodules (not just root module) to the state. 3. Create `_get_module_state(module)` to look up `_module_state_mapping`. 4. Create `_get_module_fsdp_state(module)` that uses `_get_module_state(module)` to get the state then verifies if the state is `_FSDPState`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/89147 Approved by: https://github.com/awgu
87 lines
2.5 KiB
Python
87 lines
2.5 KiB
Python
from typing import List, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from . import _ddp
|
|
from .contract import contract
|
|
|
|
|
|
class _ReplicateState:
|
|
def __init__(self) -> None:
|
|
self.modules: List[nn.Module] = []
|
|
self.has_initialized: bool = False
|
|
self._param_list: nn.ParameterList = nn.ParameterList()
|
|
self.kwargs: dict = {}
|
|
|
|
def mark_modules(self, *modules: nn.Module, **kwargs) -> None:
|
|
for module in modules:
|
|
self.modules.append(module)
|
|
replicate.state(module)._distributed_state = self
|
|
replicate.state(module)._params_collected = False
|
|
module.register_forward_pre_hook(self.forward_pre_hook)
|
|
# TODO(@yhcharles): fix type error
|
|
module.register_forward_hook(self.forward_post_hook) # type: ignore[arg-type]
|
|
self.kwargs = kwargs
|
|
|
|
def _recursive_collect_params(self, module: nn.Module) -> None:
|
|
# TODO: skip if managed by other APIs
|
|
|
|
if hasattr(replicate.state(module), "_params_collected"):
|
|
if replicate.state(module)._params_collected:
|
|
return
|
|
replicate.state(module)._params_collected = True
|
|
|
|
self._param_list.extend(
|
|
param
|
|
for param in module.parameters(recurse=False)
|
|
# for param in module.parameters()
|
|
if param.requires_grad
|
|
)
|
|
for child in module.children():
|
|
self._recursive_collect_params(child)
|
|
|
|
def init_helper(self) -> None:
|
|
if self.has_initialized:
|
|
return
|
|
|
|
self.has_initialized = True
|
|
for module in self.modules:
|
|
self._recursive_collect_params(module)
|
|
|
|
self._ddp = _ddp.DistributedDataParallel(
|
|
self._param_list, **self.kwargs
|
|
)
|
|
|
|
def forward_pre_hook(
|
|
self, module: nn.Module, input: Tuple[torch.Tensor]
|
|
) -> None:
|
|
self.init_helper()
|
|
self._ddp.pre_forward()
|
|
|
|
def forward_post_hook(
|
|
self,
|
|
module: nn.Module,
|
|
input: Tuple[torch.Tensor],
|
|
output: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
return self._ddp.post_forward(output)
|
|
|
|
|
|
@contract()
|
|
def replicate(
|
|
module: nn.Module, # NOTE: contract now supports single module only
|
|
**kwargs,
|
|
) -> nn.Module:
|
|
r"""Replicates a module
|
|
|
|
Args:
|
|
module (torch.nn.Module): module to replicate
|
|
|
|
Example::
|
|
>>> module = nn.Linear(3, 3)
|
|
>>> replicate(module)
|
|
"""
|
|
_ReplicateState().mark_modules(module, **kwargs)
|
|
return module
|